DOI QR코드

DOI QR Code

도체 구조물의 과도 산란 해석을 위한 결합 적분방정식의 안정된 MOT 기법

A Stable MOT Scheme with Combined Field Integral Equation for the Analysis of Transient Scattering from Conducting Structure

  • 이창화 (경북대학교 전자전기컴퓨터학부) ;
  • 안옥규 (호서대학교 반도체디스플레이공학과) ;
  • 권우현 (경북대학교 전자전기컴퓨터학부) ;
  • 정백호 (호서대학교 정보통신공학과)
  • Lee, Chang-Hwa (School of Electrical Engineering and Computer Science, Kyungpook national University) ;
  • An, Ok-Kyu (Dept. of Semiconductor and Display Engineering, Hoseo University) ;
  • Kwon, Woo-Hyen (School of Electrical Engineering and Computer Science, Kyungpook national University) ;
  • Jung, Baek-Ho (Dept. of Information and Communication Engineering, Hoseo University)
  • 발행 : 2008.04.30

초록

본 논문에서는 3차원 임의 형태 도체 구조의 과도 산란 해석을 위한 결합 적분방정식(CFIE)의 안정된 MOT(Marching-On in Time) 방법을 제안한다. 결합 적분방정 식은 전장 및 자장 적분방정식의 선형적인 결합으로 구성된다. 공식의 전개 과정에서 전방 및 후방, 그리고 중앙 유한 차분을 포함시켜 일반화된 식을 구성하며, 파라미터에 의하여 유한 차분의 종류를 선택할 수 있다. 적분방정식에서 시간에 대한 미분 항을 중앙 유한 차분법으로 근사시키고, 그 외의 시간 의존 항을 평균치로 표현하였을 때, 도체로부터의 과도 산란해는 가장 안정되고 정확하였다. 중앙 유한 차분법을 적용한 MOT 기법에 의한 해를 기존의 방법과 주파수 영역 결합 적분방정식(FD-CFIE)으로부터 얻은 결과의 역 푸리에 변환과 비교한다.

In this paper, a stable marching-on in time(MOT) method with a time domain combined field integral equation(CFIE) is presented to obtain the transient scattering response from arbitrarily shaped three-dimensional conducting bodies. This formulation is based on a linear combination of the time domain electric field integral equation(EFIE) with the magnetic field integral equation(MFIE). The time derivatives in the EFIE and MFIE are approximated using a central finite difference scheme and other terms are averaged over time. This time domain CFIE approach produces results that are accurate and stable when solving for transient scattering responses from conducting objects. Numerical results with the proposed MOT scheme are presented and compared with those obtained from the conventional method and the inverse discrete Fourier transform(IDFT) of the frequency domain CFIE solution.

키워드

참고문헌

  1. S. M. Rao, Time Domain Electromagnetics, Academic Press, pp. 49-149, 1999
  2. S. M, Rao, D. R. Wilton, "Transient scattering by conducting surfaces of arbitrary shape", IEEE Trans. Antennas Propagat., vol. 39, no. 1, pp. 56-61, Jan. 1991 https://doi.org/10.1109/8.64435
  3. D. A. Vechinski, S. M. Rao, "A stable Procedure to calculate the transient scattering by conducting surfaces of arbitrary shape", IEEE Trans. Antennas Propagat., vol. 40, no. 6, pp. 661-665, Jun. 1992 https://doi.org/10.1109/8.144600
  4. S. M. Rao, T. K. Sarkar, "An alternative version of the time-domain electric field integral equation for arbitrarily shaped conductors", IEEE Trans. Antennas Propagat., vol. 41, no. 6, pp. 831-834, Jun. 1993 https://doi.org/10.1109/8.250460
  5. P. J. Davies, "On the stability of time-marching schemes for the general surface electric-field integral equation", IEEE Trans. Antennas Propagat., vol. 44, no. 11, pp. 1467-1473, Nov. 1996 https://doi.org/10.1109/8.542071
  6. S. M, Rao, T. K. Satkat, "Time-domain modeling of two-dimensional conducting cylinders utilizing an implicit scheme-TM incidence", Microwave Opt. Technol. Lett., vol. 15, no. 6, pp. 342-347, Aug. 1997 https://doi.org/10.1002/(SICI)1098-2760(19970820)15:6<342::AID-MOP2>3.0.CO;2-E
  7. S. M. Rao, T. K. Sarkar, "An efficient method to evaluate the time-domain scattering from arbitrarily shaped conducting bodies", Microwave Opt. Technol. Lett., vol. 17, no. 5, pp. 321-325, Apr. 1998 https://doi.org/10.1002/(SICI)1098-2760(19980405)17:5<321::AID-MOP14>3.0.CO;2-6
  8. S. M. Kao, T. K. Sarkar, "Transient analysis of electromagnetic scattering from wire structures utilizing an implicit time-domain integral-equation technique", Microwave Opt. Technol. Lett., vol. 17, no. 1, pp. 66-69, Jan. 1998 https://doi.org/10.1002/(SICI)1098-2760(199801)17:1<66::AID-MOP18>3.0.CO;2-9
  9. S. M. Rao, D. A. Vechinski, and T. K. sarkar, "Transient scattering by conducting cylinders-implicit solution for the transverse electric case", Microwave Opt. Technol. Lett., vol. 21, no. 2, pp. 129-134, Apr. 1999 https://doi.org/10.1002/(SICI)1098-2760(19990420)21:2<129::AID-MOP13>3.0.CO;2-5
  10. T. K. Sarkar, W. Lee, and S. M. Rao, "Analysis of transient scattering from composite arbitrarily shaped complex structures", IEEE Trans. Antennas Propagat., vol. 48, no. 10, pp. 1625-1634, Oct. 2000 https://doi.org/10.1109/8.899679
  11. B. H. Jung, T. K. Sarkar, "Time-domain electric field integral equation with central finite difference", Microwave Opt. Technol. Lett., vol. 31, no. 6, pp. 429-435, Dec. 2001 https://doi.org/10.1002/mop.10055
  12. W. Lee, T. K. Sarkar, "Direct time domain solution for dielectric structure with time derivatives of the potential functions by central difference", Microwave Opt. Technol. Lett., vol. 48, no. 9, pp. 1795-1801, Sep. 2006 https://doi.org/10.1002/mop.21799
  13. B. H. Jung, T. K. Sarkar, "Transient scattering from three-dimensional conducting bodies by using magnetic field integral equation", J. of Electromag. Waves and Appl., vol. 16, no. 1, pp. 111-128, Jan. 2002 https://doi.org/10.1163/156939302X01371
  14. B. H. Jung, T. K. Sarkat, "Time-domain CFIE for the analysis of transient scattering from arbitrarily shaped 3D conducting objects", Microwave Opt. Technol. Lett., vol. 34, no. 4, pp. 289-296, Aug. 2002 https://doi.org/10.1002/mop.10440
  15. S. M. Rao, D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape", IEEE Trans. Antennas Propagat., vol. 30, no. 3, pp. 409-418, May 1982 https://doi.org/10.1109/TAP.1982.1142818
  16. D. R. Wilton, S. M. Rao, A. W. Glisson, D. H. Schaubert, O. M. Al-Bundak, and C. M. Butler, "Potential integrals for uniform and linear source distributions on polygonal and polyhedral domains", IEEE Trans. Antennas Propagat., vol. 32, no. 3, pp. 276-281, Mar. 1984 https://doi.org/10.1109/TAP.1984.1143304
  17. P. Yla-Oijala, M. Taskinen, "Calculation of CFIE impedance matrix elements with RWG and $n{\times}$ RWG functions", IEEE Trans. Antennas Propagat., vol. 51, no. 8, pp. 1837-1846, Aug. 2003 https://doi.org/10.1109/TAP.2003.814745
  18. S. M. Rao, "Electromagnetic scattering and radiation of arbitrarily-shaped surfaces by triangular Patch modeling", Ph. D. Dissertation, Univ. Mississippi, Aug. 1980