Selection and Bioactivity of Tank Mix Combinations of Pesticides for Aerial Application

항공방제용 농약의 혼용가능 조합 선발 및 생물효과

  • Jin, Yong-Duk (Harzardous Substances Division, National Academy of Agricultural Science, RDA) ;
  • Lee, Hee-Dong (Pesticide Safety Division, National Academy of Agricultural Science, RDA) ;
  • Shim, Hong-Sik (Agricultural Microbiology Division, National Academy of Agricultural Science, RDA) ;
  • Lee, Sang-Guei (Applied Entomology Division, National Academy of Agricultural Science, RDA) ;
  • Kwon, Oh-Kyung (Harzardous Substances Division, National Academy of Agricultural Science, RDA)
  • 진용덕 (국립농업과학원 유해물질과) ;
  • 이희동 (국립농업과학원 농약평가과) ;
  • 심홍식 (국립농업과학원 농업미생물과) ;
  • 이상계 (국립농업과학원 곤충산업과) ;
  • 권오경 (국립농업과학원 유해물질과)
  • Published : 2008.12.31

Abstract

This study was conducted to select excellent tank mix combinations of pesticides for aerial application by manned helicopter. Among 209 pesticide combinations of 3-way tank-mixing for aerial application, a total of 93 recommendable combinations including tricyclazole SC+validamycin-A SL+imidacloprid SL were finally selected for the simultaneous control of key pests on paddy rice such as blast, sheath blight, brown planthopper and moth. The selected combinations were not phytotoxic to rice plants and nearby non-target crops, and excellent in physicochemical properties of ultra low volume (ULV) spray solutions. The efficacies on sheath blight, brown planthoppers and white-backed planthoppers of pesticides sprayed by aerial application were similar to those of pesticides by conventional spraying. Total cost of aerial application in paddy rice was very economical as one fourth level of that of conventional spraying.

벼의 주요 병해충인 도열병, 잎집무늬마름병, 벼멸구 및 나방류를 동시에 방제할 수 있는 항공방제용 고농도 소량살포 가능 농약혼용조합 209조합에 대하여 시험한 결과, 벼는 물론 주변작물에 약해가 없고 살포액의 물리성이 양호한 tricyclazole SC + validamycin-A SL + imidacloprid SL 등 우수 혼용조합 93 조합을 최종 선발하였다. 선발된 조합의 항공살포에 의한 약효는 일반살포의 방제효과와 비슷하였다. 또한 유인헬기에 의한 항공방제는 일반 관행살포에 비해 방제비용을 1/4 수준으로 크게 줄일 수 있음을 확인하였다.

Keywords

References

  1. Akesson Norman B. and Wesley E. Yates (1974) The use of aircraft in agriculture. FAO/UN Rome. pp. 217
  2. Bird, S. L., D. M. Esterly and S. G. Perry (1996) Off-target deposition of pesticides from agricultural aerial spray applications. Journal of environmental quality (USA). 25(5): 1095-1104
  3. Dobrat, W. and A. Martijn editors (2003) CIPAC Handbook Volume F. pp. 472
  4. EPA (1999) Spray Drift of Pesticides. Pesticides : Topical & Chemical Fact Sheets. Internet. Available at http://www.epa.gov/ pesticides/factsheets/spraydrift.htm
  5. FAO (1988) Guidelines on Good Practice for Ground and Aerial Application of Pesticides. FAO/UN Rome
  6. Hewitt, A. J. (2008) Droplet size spectra classification categories in aerial application scenarios. Crop Protection 27:1284-1288 https://doi.org/10.1016/j.cropro.2008.03.010
  7. EPA (2002) OPPTS Harmonized Test Guidelines-Series 840 Spray Drift Test Guidelines
  8. Nordbo Ebbe, Kristian Kristensen & Eric Kirknel (1993) Effects of Wind Direction, Wind Speed and Travel Speed on Spray Deposition. Pesti. Sci. 38:33-34 https://doi.org/10.1002/ps.2780380106
  9. Stainier, C. M.-F. Destain, B. Schiffers, F. Lebeau (2006) Droplet size spectra and drift effect of two phenmedipham formulations and four adjuvants mixtures. Crop Protection 25:1238-1243 https://doi.org/10.1016/j.cropro.2006.03.006
  10. Yates Wesley E., N. B. Akesson, R. E. Cowden (1974) Criteria for Minimizing Drift Residues on Crops Downwind from Aerial Applications. Transactions of the ASAE. pp. 627-632
  11. 農林水産航空協會 (2003) 航空防除用農藥要覽. pp. 76
  12. 진용덕 (2005) 농약살포액의 이화학적 특성과 환경영향 평가. 충북대학교 박사학위논문
  13. 한국작물보호협회 (2008) 농약사용지침서 pp. 1,080