DOI QR코드

DOI QR Code

Raman and Photoluminescence Study of Single-Walled Carbon Nanotubes Dispersed in Sodium Dodecyl Sulfate Aqueous Solution Using Ultrasonication

계면활성제를 이용한 단층 탄소나노튜브 분리에 따른 라만과 Photoluminescence 연구

  • 박준 (중앙대학교 자연과학대 물리학과) ;
  • 성맹제 (중앙대학교 자연과학대 물리학과)
  • Published : 2008.03.30

Abstract

We have studied, using Raman and photoluminescence (PL) spectroscopy, material property changes of single-walled carbon nanotubes (SWCNTs) dispersed in sodium dodecyl sulfate(SDS) aqueous solution by ultrasonication. Radial breathing mode Raman intensities of the dispersed SWCNTs shows different behavior depending on their chiralities as the sonication time increases. As the amount of SWCNTs dispersed in 1wt% SDS solution increases, both a downshift of the G-band Raman frequency and an enhancement in the PL intensity were observed.

고립된 탄소나노튜브를 얻기 위해 계면활성제 Sodium Dodecyl Sulfate(SDS) 수용액에 단층 탄소나노튜브 분말을 넣어 초음파 처리를 하는 과정 중에 발생하는 물성 변화를 라만과 Photoluminescence를 통하여 연구하였다. 단층 탄소나노튜브(SWCNT) radial breathing mode(RBM)의 라만신호 세기의 변화는 SWCNT의 chirality에 따라 서로 다른 경향성을 보이고 초음파 처리 시간에 영향을 받음을 확인하였다. 또한 동일한 농도의 계면활성제에 담긴 SWCNT의 농도가 커지면 G-band 라만 진동수가 작아지면서 Photoluminescence 세기가 증가하는 현상을 관측하였다.

Keywords

References

  1. A. Javey, J. Guo, Q. Wang, M. Lundstrom, H. Dai, Nature 424, 654 (2003) https://doi.org/10.1038/nature01797
  2. M. S. Fuhrer, J. NygArd, L. Shih, M. Forero, Y. Yoon, M. S. C. Mazzoni, H. J. Choi, J. Ihm, S. G. Louie, A. Zettl, P. L. McEuen, Science 288, 494 (2000) https://doi.org/10.1126/science.288.5465.494
  3. P. Qi, A. Javey, M. Rolandi, Q. Wang, E. Yenilmez, H. Dai, J. Am. Chem. Soc. 126, 11774 (2004) https://doi.org/10.1021/ja045900k
  4. S. Y. Lee, D. H. Ryu, J. Y. Hong, M. H. Yeom, J. H. Yang, W. C. Choi, M. H. Kwon, and C.-Y. Park, J. Kor. Vac. Soc. 16, 291 (2007) https://doi.org/10.5757/JKVS.2007.16.4.291
  5. W. Song, W. C. Choi, C. Jeon, D. H. Ryu, S. Y. Lee, Y. S. Shin, and C.-Y. Park, J. Kor. Vac. Soc. 16, 377 (2007) https://doi.org/10.5757/JKVS.2007.16.5.377
  6. J. Hahm, C. M. Lieber, Nano Lett. 4, 51 (2004) https://doi.org/10.1021/nl034853b
  7. R. J. Chen, S. Bangsaruntip, K. A. Drouvalakis, N. W. S. Kam, M. Shim, Y. Li, W. Kim, P. J. Utz, H. Dai, Pro. Nat. Aca. Sci. USA 100, 4984 (2003)
  8. J. J. Goodinf, R. Wibowo, J. Liu, W. Yang, D. Losic, S. Orbons, F. J. Mearns, J. G. Shapter, D. B. Hibbert, J. Am. Chem. Soc. 125, 9006 (2003) https://doi.org/10.1021/ja035722f
  9. J. Li, H. T. Ng, A. Cassell, W. Fan, H. Chen, Q. Ye, J. Kehne, J. Han, M. Meyyappan, Nano Lett. 3, 597 (2003) https://doi.org/10.1021/nl0340677
  10. Y. Lin, F. Lu, Y. Tu, Z. Ren, Nano Lett. 4, 191 (2004) https://doi.org/10.1021/nl0347233
  11. M. J. O'Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman, R. E. Smalley, Science 297, 593 (2002) https://doi.org/10.1126/science.1072631
  12. M. Zheng, A. Jagota, E. D. Semke, B. A. Diner, R. S. Mclean, S. R. Lustig, R. E. Richardson, N. G. Tassi, Nature Materials 2, 338 (2003) https://doi.org/10.1038/nmat877
  13. S. S. Karajanagi, H. Yang, P. Asuri, E. Sellitto, Jonathan S. Dordick, R. S. Kane, Langmuir 22, 1392 (2006) https://doi.org/10.1021/la0528201
  14. J. Lefebvre, P. Finnie, Y. Homma, Phys. Rev. B 70, 045419 (2004) https://doi.org/10.1103/PhysRevB.70.045419
  15. J. Lefebvre, J. M. Fraser, P. Finnie, Y. Homma, Phys. Rev, B 69, 075403 (2004) https://doi.org/10.1103/PhysRevB.69.075403
  16. J. Lefebvre, J. M. Fraser, Y. Homma, P. Finnie, Appl. Phys. A 78, 1107 (2004) https://doi.org/10.1007/s00339-003-2460-6
  17. V. C. Moore, M. S. Strano, E. H. Haroz, R. H. Hauge, R. E. Smalley, Nano Lett. 3, 1379 (2003) https://doi.org/10.1021/nl034524j
  18. J. Maultzsch, H. Telg, S. Reich, C. Thomson, Phys. Rev. B 72, 205438 (2005) https://doi.org/10.1103/PhysRevB.72.205438