• Title/Summary/Keyword: 연직 주상구조물

Search Result 2, Processing Time 0.015 seconds

3-Dimensional Analysis for Nonlinear Wave Forces Acting on Dual Vertical Columns and Their Nonlinear Wave Transformations (복수 연직 주상구조물에 작용하는 비선형파력과 구조물에 의한 비선형파랑변형의 3차원해석)

  • Lee, Kwang-Ho;Lee, Sang-Ki;Shiin, Dong-Hoon;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.1
    • /
    • pp.1-13
    • /
    • 2008
  • In the present work, wave transformation by vertical columns and its wave forces acting on them are discussed using a direct 3-D numerical model based on the VOF (Volume Of Fluid) method. The numerical results for wave transformations and wave forces are critically compared to an advanced experimental data, and provide the verification of the numerical model used in the present study. Overall model-data comparisons are good. After verification of the numerical model, it is used to simulate wave fields around dual vertical columns with arbitrary cross section, and the characteristics of nonlinear wave forces and wave transformations according to the variations of different cross section types of vertical columns, an interval of vertical columns and incident wave angle are discussed.

Wave Forces Acting on Vertical Cylinder and Their Wave Transformations by 3-Dimensional VOF Method (3차원 VOF법에 의한 연직 주상구조물에 작용하는 파력과 구조물에 의한 파랑변형 해석)

  • Lee, Kwang-Ho;Lee, Sang-Ki;Sin, Dong-Hoon;Kim, Chang-Hoon;Kim, Do-Sam
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.2 s.75
    • /
    • pp.12-21
    • /
    • 2007
  • As the economy grows and the population increases, we need to develop our coastal area and make use of it for various purposes. Specifically, investigation of the wave interactions on and around the vertical cylinders is very important in the design of the offshore or coastal structures. The nonlinear potential analysis developed so far, although very useful, has been found to be limited in application, as strong nonlinear waves generated by the interference between multilayered cylinders and wave impact forces by breaking waves can hardly be estimated. In this study, using a 3-Dimensional volume tracking method VOF(Volume of Fluid), based on Namer-Stokes equations, was developed to simulate highly nonlinear effects, such as breaking waves at the interface or complicated interference waves among structures. A numerical method for nonlinear interaction wave and vertical cylinders is newly proposed. The wave forces and wave transformations computed by the newly proposed numerical simulation method were compared to the other researcher's experimental results, and the results agree well. Based on the validation of this study, this numerical method is applied to the two vertical cylinders to discuss their nonlinear wave forces and wave transformations, according to the variations of separate distance of vertical cylinders.