C-V Characteristics in Nanometer Scale MuGFETs with Considering Quantum Effects

양자 현상을 고려한 나노미터 스케일 MUGFETS의 C-V 특성

  • Yun, Se-Re-Na (Department of Electronics Engineering, University of Incheon) ;
  • Yu, Chong-Gun (Department of Electronics Engineering, University of Incheon) ;
  • Park, Jong-Tae (Department of Electronics Engineering, University of Incheon)
  • Published : 2008.11.25

Abstract

In this work, a two dimensional, self-consistent Poisson-$Schr{\ddot{o}}dinger$ solver has been implemented to study C-V characteristics in nanometer scale MuGFETs with considering quantum effects. The quantum-mechanical effects on gate-channel capacitance for different device dimension and gate configurations of nanometer scale MuGFETs have been analyzed. It has been found that 4he gate-channel capacitance per unit gate area is increased as the device dimension decreases. For different gate configurations, the gate-channel capacitance is decreased with increase of effective gate number. Those resu1ts have been explained by the distribution profile of electron concentration in the silicon surface and inversion capacitance. The length of inversion-layer centroid has been calculated from inversion capacitance with device dimension and gate configurations.

본 연구에서는 양자 현상을 고려한 나노미터 MuGFET의 C-V 특성을 분석하기 위하여 2차원 Poisson-$Schr{\ddot{o}}dinger$ 방정식을 self-consisnt하게 풀 수 있는 시뮬레이터를 구현하였다. 소자 시뮬레이터를 이용하여 양자 현상으로 인한 소자크기와 게이트 구조에 따른 게이트-채널 커패시턴스 특성을 분석하였다. 소자의 크기가 감소할수록 단위 면적당 게이트-채널 커패시턴스는 증가하였다. 그리고 게이트 구조가 다른 소자에서는 게이트-채널 커패시턴스가 유효게이트 수가 증가할수록 감소하였다. 이런 결과를 실리콘 표면의 전자농도 분포와 인버전 커패시턴스로 설명하였다 또한 인버전 커패시턴스로부터 소자의 크기 및 게이트 구조에 따른 inversion-layer centroid 길이도 계산하였다.

Keywords

References

  1. X. Huang, W.C. Lee, C. Kuo, D. Hisamoto, L. Chang, J. Kedzierski, E. Anderson, H. Takeuchi, Y.K. Choi, K. Asano, V. Subramanian, T.J. King, J. Bokor, and C. Hu, "Sub 50nm FinFET: PMOS," Technical Digest of IEDM, pp. 67-70, 1999
  2. B.S. Doyle, S. Datta, M. Doczy, S. Hareland, B Jin, J. Kavalieros, T. Linton, A. Murthy, R. Rios, and R. Chau, "High performance fully-depleted tri-gate CMOS transistors," IEEE Electron Device Letters, vol. 24, no. 4, pp. 263-265, 2003 https://doi.org/10.1109/LED.2003.810888
  3. J.T. Park, J.P. Colinge, and C.H. Diaz, "Pi-gate SOI MOSFETs," IEEE Electron Device Letters, vol. 22, no. 4, pp. 405-406, 2001 https://doi.org/10.1109/55.936358
  4. Yang, F.L. et al., "25 nm CMOS Omega FETs," Technical Digest of IEDM, pp. 255-258, 2002
  5. J.P. Colinge, M.H. Gao, A.R. Rodriguez, H. Maes, and C. Claeys, "Silicon-on-insulator gate-all-around device," Technical Digest of IEDM, pp. 595-598, 1990
  6. Y. Omura, S. Horiguchi, M. tabe, and K. Kishi, "Quantum-mechanical effects on the threshold voltage of ultrathin-SOI nMOSFETs," IEEE Electron Dev. Letters, vol. 14, no. 12, pp. 569-571, 1993 https://doi.org/10.1109/55.260792
  7. T. Poiroux, M. Vinet, O. Faynot, J. Widiez, J. Lolivier, T. Ernst, B. previtali, and S. Deleonibus, "Mutiple gate device: advantage and challenges," micrelectronic engineering, vol.80, pp. 378-385, 2005 https://doi.org/10.1016/j.mee.2005.04.095
  8. B.K. Ip, and J.R. brews, "Quantum effects upon drain current in a biased MOSFET," IEEE Trans. Electron Devices, vol. 45, no. 10, pp. 2213-2221, 1998 https://doi.org/10.1109/16.725256
  9. C. Pacha, K. von Arnim et. al., "Circuit design issues in muti-gate FET CMOS technologies," ISSCC digest of Techn., pp. 420-421, 2006
  10. Shin-ichi. Takagi, Junji Koga and Akira Toriumi, "Subband structure engineering for performance enhancement of Si MOSFETs," Technical Digest of IEDM, pp. 219-222, 1997
  11. Ken Uchida, Junji Koga, Ryuji Ohba, Toshinori Numata, and Shin-ichi Takagi, "Experimental evidence of quantum-mechanical effects on low-field mobility, gate-channel capacitance, and threshold voltage of ultra-thin body SOI MOSFETs," Technical Digest of IEDM, pp. 633-636, 2001
  12. Lixin Ge, Francisco Gamiz, Glenn O. Workman, and Surya Veeraraghavan, "On the gate capacitance limits of nanoscale DG and FD SOI MOSFETs," IEEE Trans. Electron Devices, vol. 53, no. 4, pp.753-758, 2006 https://doi.org/10.1109/TED.2006.871412
  13. J.A. Lopez-Villanueva, P. C. Cassinello, F. Gamiz, and A. J. Palma, "Effects of the inversion-layer centroid on the performance of double-gate MOSFETs", IEEE Trans. Electron Devices, vol. 47, no. 1, pp. 141-146, 2000 https://doi.org/10.1109/16.817579
  14. J.P. Colinge, J.C. Alderman, W. Xiong, and C.R. Cleavelin, "Quantum-mechanical effects in Trigate SOI MOSFETs," IEEE Trans. Electron Devices, vol. 53, no. 5, pp. 1131-1136, 2006 https://doi.org/10.1109/TED.2006.871872
  15. D. Vasileska, D.K. Schroder, and D.K. Ferry, "Scaled silicon MOSFET's: degrdation of the total gate capacitance", IEEE Trans. Electron Devices, vol. 44, no. 4, pp. 584-587, 1997 https://doi.org/10.1109/16.563362
  16. A. Marchi, E. Gnani, S. Reggiani, M. Rudan and G. Baccarani, "Investigating the performance limits of silicon-nanowire and carbon-nanotube FETs," Solid State electronics, vol. 50, pp. 78-85, 2006 https://doi.org/10.1016/j.sse.2005.10.039