참고문헌
- Sasaki E, Shimada T, Osawa R, Nishitani Y, Spring S, Lang E. Isolation of tannin-degrading bacteria isolated from feces of the Japanese large wood mouse, Apodemus speciosus, feeding on tannin-rich acorns. Syst. Appl. Microbiol. 28: 358-365 (2005) https://doi.org/10.1016/j.syapm.2005.01.005
- Aguilar CN, Rodriguez R, Gutierrez-Sanchez G, Auguar C, Favela-Torres E, Prado-Barragan LA, Ramirez-Coronel A, Contreras-Esquivel JC. Microbial tannases: Advances and perspectives. Appl. Microbiol. Biot. 76: 47-59 (2007) https://doi.org/10.1007/s00253-007-1000-2
- Bhat TK, Singh B, Sharma OP. Microbial degradation of tannins a current perspective. Biodegradation 9: 343-357 (1998) https://doi.org/10.1023/A:1008397506963
- Boadi DK, Neufeld RJ. Encapsulation of tannase for the hydrolysis of tea tannins. Enzyme Microb. Tech. 28: 590-595 (2001) https://doi.org/10.1016/S0141-0229(01)00295-2
- Kar B, Banerjee R, Bhattacharyya BC. Optimization of physicochemical parameters for gallic acid production by evolutionary operation-factorial design technique. Process Biochem. 37: 1395-1401 (2002) https://doi.org/10.1016/S0032-9592(02)00020-1
- Sharma S, Gupta MN. Synthesis of antioxidant propyl gallate using tannase from Aspergillus niger van Teighem in nonaquoeous media. Bioorg. Med. Chem. Lett. 13: 395-397 (2003) https://doi.org/10.1016/S0960-894X(02)00977-0
- Vaquero I, Marcobal A, Munoz R. Tannase activity by lactic acid bacteria isolated from grape must and wine. Int. J. Food Microbiol. 96: 199-204 (2004) https://doi.org/10.1016/j.ijfoodmicro.2004.04.004
- Goel G, Puniya AK, Aguilar CN, Singh K. Interaction of gut microflora with tannins in feeds. Naturwissenschaften 92: 497-503 (2005) https://doi.org/10.1007/s00114-005-0040-7
- Osawa R, Kuroiso K, Goto S, Shimizu A. Isolation of tannin-degrading lactobacilli from humans and fermented foods. Appl. Environ. Microb. 66: 3093-3097 (2000) https://doi.org/10.1128/AEM.66.7.3093-3097.2000
- Nishitani Y, Sasaki E, Fujisawa T, Osawa R. Genotypic analysis of lactobacilli with a range of tannase activities isolated from human feces and fermented foods. System. Appl. Microbiol. 27: 109-117 (2004) https://doi.org/10.1078/0723-2020-00262
- Short C. The probiotic century: Historical and current perspectives. Trends Food Sci. Tech. 10: 411-417 (1999) https://doi.org/10.1016/S0924-2244(00)00035-2
- Lee J-S, Heo G-Y, Lee JW, Oh Y-J, Park JA, Park Y-H, Pyun Y-R, Ahn JS. Analysis of kimchi microflora using denaturing gradient gel electrophoresis. Int. J. Food Microbiol. 102: 143-150 (2005) https://doi.org/10.1016/j.ijfoodmicro.2004.12.010
- Kim M, Chun J. Bacterial community structure in kimchi, a Korean fermented vegetable food, as revealed by 16S rRNA gene analysis. Int. J. Food Microbiol. 103: 91-96 (2005) https://doi.org/10.1016/j.ijfoodmicro.2004.11.030
- Lee KH, Park JY, Jeong SJ, Kwon GH, Lee HJ, Chang HC, Chung DK, Lee J-H, Kim JH. Characterization of paraplantaricin C7, a novel bacteriocin produced by Lactobacillus paraplantarum C7 isolated from kimchi. J. Microbiol. Biotechn. 17: 287-296 (2007)
- Osawa R. Formation of a clear zone on tannin-treated brain heart infusion agar by a Streptococcus sp. isolated from feces of koalas. Appl. Environ. Microb. 56: 829-831 (1990)
- Torriani S, Felis GE, Dellaglio F. Differentiation of Lactobacillus plantarum, L. pentosus, and L. paraplantarum by recA gene sequence analysis and multiplex PCR assay with recA gene-derived primers. Appl. Environ. Microb. 67: 3450-3454 (2001) https://doi.org/10.1128/AEM.67.8.3450-3454.2001
- Nishitani Y, Osawa R. A novel colorimetric method to quantify tannase activity of viable bacteria. J. Microbiol. Meth. 54: 281-284 (2003) https://doi.org/10.1016/S0167-7012(03)00063-0
- Ephraim E, Odenyo A, Ashenafi M. Isolation and characterization of tannin-degrading bacteria from faecal samples of some wild ruminants in Ethiopia. Anim. Feed Sci. Tech. 118: 243-253 (2005) https://doi.org/10.1016/j.anifeedsci.2004.10.015
- Alberto MR, Gomez-Cordoves C, Manca de Nadra MC. Metabolism of gallic acid and catechin by Lactobacillus hilgardii from wine. J. Agr. Food Chem. 52: 6465-6469 (2004) https://doi.org/10.1021/jf049239f
- LoCascio RG, Mills DA, Waterhouse AL. Reduction of catechin, rutin, and quercetin levels by interaction with food-related microorganisms in a resting state. J. Sci. Food Agr. 86: 2105-2112 (2006) https://doi.org/10.1002/jsfa.2583
- Lee J-H, Kim M, Um S. PCR-based detection and identification of Lactobacillus plantarum, Lactobacillus pentosus, and Lactobacillus paraplantarum in kimchi. Food Sci. Biotechnol. 13: 754-757 (2004)
- Um SH, Shin WS, Lee J-H. Real-time PCR monitoring of Lactobacillus sake, Lactobacillus plantarum, and Lactobacillus paraplantarum during kimchi fermentation. Food Sci. Biotechnol. 15: 595-598 (2006)
- Mingshu L, Kai Y, Qiang H, Dongying J. Biodegradation of gallotannins and ellagitannins. J. Basic Microb. 46: 68-84 (2006) https://doi.org/10.1002/jobm.200510600
- Rodriguez H, de las Rivas B, Gomez-Cordoves C, Munoz R. Degradation of tannic acid by cell-free extracts of Lactobacillus plantarum. Food Chem. 107: 664-670 (2008) https://doi.org/10.1016/j.foodchem.2007.08.063