DOI QR코드

DOI QR Code

Noninvasive Monitoring of Bleomycin-induced Lung Injury in Rats Using Pulmonary Function Test

  • Yang, Mi-Jin (Division of Inhalation Toxicology, KIT Jeongeup Campus) ;
  • Yang, Young-Su (Division of Inhalation Toxicology, KIT Jeongeup Campus) ;
  • Kim, Yong-Bum (Division of Inhalation Toxicology, KIT Jeongeup Campus) ;
  • Cho, Kyu-Hyuk (Division of Inhalation Toxicology, KIT Jeongeup Campus) ;
  • Heo, Jeong-Doo (Division of Inhalation Toxicology, KIT Jeongeup Campus) ;
  • Lee, Kyu-Hong (Division of Inhalation Toxicology, KIT Jeongeup Campus) ;
  • Song, Chang-Woo (Division of Inhalation Toxicology, KIT Jeongeup Campus)
  • Published : 2008.12.01

Abstract

The single intratracheal instillation (ITI) of bleomycin (BLM) is a widely used method for inducing experimental pulmonary fibrosis in rat model. In the present study, pulmonary function tests (PFTs) of tidal volume ($V_T$), minute volume ($V_M$), and respiratory frequency ($F_R$) have been applied to study their possibility as a tool to monitor the progress of BLM-induced lung injury in rat model. Rats were treated with a single ITI of BLM (2.5 mg/kg) or saline (control). Animals were euthanized at 3, 7, 14, 21, and 28 days post-ITI. Lung toxicity effects were evaluated by inflammatory cell count, lactate dehydrogenase (LDH) activity in the bronchoalveolar lavage fluid (BALF), and light microscopic examination of lung injury. The PFT parameters were measured immediately before the animals were sacrificed. BLM treatment induced significant cellular changes in BALF-increase in number of total cells, neutrophils, and lymphocytes along with sustained increase in number of macrophages compared to the controls at days 3, 7, and 14. BALF LDH level was significantly increased compared to that in the controls up to day 14. On day 3, infiltration of neutrophils was observed in the alveolar spaces. These changes developed into marked peribronchiolar and interstitial infiltration by inflammatory cells, and extensive thickening of the interalveolar septa on day 7. At 14, 21, and 28 days, mild peribronchiolar fibrosis was observed along with inflammatory cell infiltration. The results of PFT show significant consistencies compared to the results of other toxicity tests. These data demonstrate that the most suitable time point for assessing lung fibrosis in this model is 14 days post-ITI of BLM based on the observation of fibrosis at 14, 21, and 28 days. Further, the progress of lung injury can be traced by monitoring the PFT parameters of $F_R$, $V_T$, and $V_M$.

Keywords

References

  1. Antonini, J.M., Taylor, M.D., Millecchia, L., Bebout, A.R. and Roberts, J.R. (2004). Suppression in lung defense responses after bacterial infection in rats pretreated with different welding fumes. Toxicol. Appl. Pharmacol., 200, 206-218 https://doi.org/10.1016/j.taap.2004.04.022
  2. Antoniou, K.M., Ferdoutsis, E. and Bouros, D. (2003). Interferons and their application in the diseases of the lung. Chest, 123, 209-216 https://doi.org/10.1378/chest.123.1.209
  3. Ashcroft, T., Simpson, J.M. and Timbrell, V. (1988). Simple method of estimating severity of pulmonary fibrosis on a numerical scale. J. Clin. Pathol., 41, 467-470 https://doi.org/10.1136/jcp.41.4.467
  4. Cortijo, J., Cerda-Nicolas, M., Serrano, A., Bioque, G., Estrela, J.M., Santangelo, F., Esteras, A., Llombart-Bosch, A. and Morcillo, E.J. (2001). Attenuation by oral N-acetylcysteine of bleomycin-induced lung injury in rats. Eur. Respir. J., 17, 1228-1235 https://doi.org/10.1183/09031936.01.00049701
  5. El-Medany, A., Hagar, H.H., Moursi, M., At Muhammed, R., El-Rakhawy, F.I. and El-Medany, G. (2005). Attenuation of bleomycin-induced lung fibrosis in rats by mesna. Eur. J. Pharmacol., 509, 61-70 https://doi.org/10.1016/j.ejphar.2004.12.001
  6. El Maghraoui, A., Chaouir, S., Abid, A., Bezza, A., Tabache, F., Achemlal, L., Abouzahir, A., Ghafir, D., Ohayon, V. and Archane, M.I. (2004). Lung findings on thoracic high-resolution computed tomography in patients with ankylosing spondylitis. Correlations with disease duration, clinical findings and pulmonary function testing. Clin. Rheumatol., 23, 123-128 https://doi.org/10.1007/s10067-003-0845-8
  7. Flaherty, K.R. and Martinez, F.J. (2000). The role of pulmonary function testing in pulmonary fibrosis. Curr. Opin. Pulm. Med., 6, 404-410 https://doi.org/10.1097/00063198-200009000-00003
  8. Gharaee-Kermani, M., Hu, B., Phan, S.H. and Gyetko, M.R. (2008). The role of urokinase in idiopathic pulmonary fibrosis and implication for therapy. Expert. Opin. Investig. Drugs., 17, 905-916 https://doi.org/10.1517/13543784.17.6.905
  9. Gharaee-Kermani, M. and Phan, S.H. (2005). Molecular mechanisms of and possible treatment strategies for idiopathic pulmonary fibrosis. Curr. Pharm. Des., 11, 3943- 3971 https://doi.org/10.2174/138161205774580561
  10. Gharaee-Kermani, M., Ullenbruch, M. and Phan, S.H. (2005). Animal models of pulmonary fibrosis. Methods Mol. Med., 117, 251-259
  11. Gross, T.J. and Hunninghake, G.W. (2001). Idiopathic pulmonary fibrosis. N. Engl. J. Med., 345, 517-525 https://doi.org/10.1056/NEJMra003200
  12. Iraz, M., Erdogan, H., Kotuk, M., Yagmurca, M., Kilic, T., Ermis, H., Fadillioglu, E. and Yildirim, Z. (2006). Ginkgo biloba inhibits bleomycin-induced lung fibrosis in rats. Pharmacol. Res., 53, 310-316 https://doi.org/10.1016/j.phrs.2005.12.009
  13. Izbicki, G., Segel, M.J., Christensen, T.G., Conner, M.W. and Breuer, R. (2002). Time course of bleomycin-induced lung fibrosis. Int. J. Exp. Pathol., 83, 111-119 https://doi.org/10.1046/j.1365-2613.2002.00220.x
  14. Jordana, M., Dolovich, M., Irving, L.B., Tomioka, M., Befus, D., Gauldie, J. and Newhouse, M.T. (1988). Solute movement across the alveolar-capillary membrane after intratracheally administered bleomycin in rats. Am. Rev Respir. Dis., 138, 96-100 https://doi.org/10.1164/ajrccm/138.1.96
  15. Karmouty-Quintana, H., Cannet, C., Zurbruegg, S., Ble, F.X., Fozard, J.R., Page, C.P. and Beckmann, N. (2007). Bleomycin- induced lung injury assessed noninvasively and in spontaneously breathing rats by proton MRI. J. Magn. Reson. Imaging., 26, 941-949 https://doi.org/10.1002/jmri.21100
  16. Kolb, M., Margetts, P.J., Galt, T., Sime, P.J., Xing, Z., Schmidt, M. and Gauldie, J. (2001). Transient transgene expression of decorin in the lung reduces the fibrotic response to bleomycin. Am. J. Respir. Crit. Care. Med., 163, 770-777 https://doi.org/10.1164/ajrccm.163.3.2006084
  17. Kuwano, K., Hagimoto, N. and Hara, N. (2001). Molecular mechanisms of pulmonary fibrosis and current treatment. Curr. Mol. Med., 1, 551-573 https://doi.org/10.2174/1566524013363401
  18. Lazenby, A.J., Crouch, E.C., McDonald, J.A. and Kuhn, C. 3rd (1990). Remodeling of the lung in bleomycin-induced pulmonary fibrosis in the rat. An immunohistochemical study of laminin, type IV collagen, and fibronectin. Am. Rev. Respir. Dis., 142, 206-214 https://doi.org/10.1164/ajrccm/142.1.206
  19. Lopez-Majano, V. and Renzi, G. (1978). Indications for pulmonary function testing. Respiration, 35, 53-63 https://doi.org/10.1159/000193859
  20. Lynch, J.P., 3rd, White, E. and Flaherty, K. (2001). Corticosteroids in idiopathic pulmonary fibrosis. Curr. Opin. Pulm. Med., 7, 298-308 https://doi.org/10.1097/00063198-200109000-00009
  21. Martinez, F.J. and Flaherty, K. (2006). Pulmonary function testing in idiopathic interstitial pneumonias. Proc. Am. Thorac. Soc., 3, 315-321 https://doi.org/10.1513/pats.200602-022TK
  22. Mason, R.J., Schwarz, M.I., Hunninghake, G.W. and Musson, R.A. (1999). NHLBI Workshop Summary. Pharmacological therapy for idiopathic pulmonary fibrosis. Past, present, and future. Am. J. Respir. Crit. Care. Med., 160, 1771- 1777 https://doi.org/10.1164/ajrccm.160.5.9903009
  23. Moeller, A., Ask, K., Warburton, D., Gauldie, J. and Kolb, M. (2008). The bleomycin animal model: a useful tool to investigate treatment options for idiopathic pulmonary fibrosis? Int. J. Biochem. Cell. Biol., 40, 362-382 https://doi.org/10.1016/j.biocel.2007.08.011
  24. Nakao, A., Fujii, M., Matsumura, R., Kumano, K., Saito, Y., Miyazono, K. and Iwamoto, I. (1999). Transient gene transfer and expression of Smad7 prevents bleomycin-induced lung fibrosis in mice. J. Clin. Invest., 104, 5-11 https://doi.org/10.1172/JCI6094
  25. Nathan, S.D., Shlobin, O.A., Ahmad, S., Urbanek, S. and Barnett, S.D. (2007). Pulmonary hypertension and pulmonary function testing in idiopathic pulmonary fibrosis. Chest., 131, 657-663 https://doi.org/10.1378/chest.06-2485
  26. Okada, T., Sugie, I. and Aisaka, K. (1993). Effects of gammainterferon on collagen and histamine content in bleomycin- induced lung fibrosis in rats. Lymphokine Cytokine Res., 12, 87-91
  27. Piguet, P.F., Collart, M.A., Grau, G.E., Sappino, A.P. and Vassalli, P. (1990). Requirement of tumour necrosis factor for development of silica-induced pulmonary fibrosis. Nature, 344, 245-247 https://doi.org/10.1038/344245a0
  28. Sakanashi, Y., Takeya, M., Yoshimura, T., Feng, L., Morioka, T. and Takahashi, K. (1994). Kinetics of macrophage subpopulations and expression of monocyte chemoattractant protein-1 (MCP-1) in bleomycin-induced lung injury of rats studied by a novel monoclonal antibody against rat MCP- 1. J. Leukoc. Biol., 56, 741-750 https://doi.org/10.1002/jlb.56.6.741
  29. Seagrave, J., Campen, M.J., McDonald, J.D., Mauderly, J.L. and Rohr, A.C. (2008). Oxidative stress, inflammation, and pulmonary function assessment in rats exposed to laboratory-generated pollutant mixtures. J. Toxicol. Environ. Health A, 71, 1352-1362 https://doi.org/10.1080/15287390802271566
  30. Spond, J., Billah, M.M., Chapman, R.W., Egan, R.W., Hey, J.A., House, A., Kreutner, W. and Minnicozzi, M. (2004). The role of neutrophils in LPS-induced changes in pulmonary function in conscious rats. Pulm. Pharmacol. Ther., 17, 133-140 https://doi.org/10.1016/j.pupt.2004.01.003
  31. Szapiel, S.V., Elson, N.A., Fulmer, J.D., Hunninghake, G.W. and Crystal, R.G. (1979). Bleomycin-induced interstitial pulmonary disease in the nude, athymic mouse. Am. Rev. Respir. Dis., 120, 893-899
  32. Tzurel, A., Segel, M.J., Or, R., Goldstein, R.H. and Breuer, R. (2002). Halofuginone does not reduce fibrosis in bleomycin- induced lung injury. Life Sci., 71, 1599-1606 https://doi.org/10.1016/S0024-3205(02)01902-1
  33. Yang, M.J., Kim, J.S., Yang, Y.S., Cho, J.W., Chio, S.B., Chung, Y.H., Kim, Y.B., Cho, K.H., Lim, C.W., Kim, C.Y. and Song, C.W. (2008). Pulmonary toxicity and recovery from inhalation of manual metal arc stainless steel welding fume in rats. Toxicol. Res., 24, 119-127 https://doi.org/10.5487/TR.2008.24.2.119
  34. Zhang, H.Y., Gharaee-Kermani, M., Zhang, K., Karmiol, S. and Phan, S.H. (1996). Lung fibroblast alpha-smooth muscle actin expression and contractile phenotype in bleomycin- induced pulmonary fibrosis. Am. J. Pathol., 148, 527- 537
  35. Zhang, K., Gharaee-Kermani, M., Jones, M.L., Warren, J.S. and Phan, S.H. (1994a). Lung monocyte chemoattractant protein-1 gene expression in bleomycin-induced pulmonary fibrosis. J. Immunol., 153, 4733-4741
  36. Zhang, K., Gharaee-Kermani, M., McGarry, B. and Phan, S. H. (1994b). In situ hybridization analysis of rat lung alpha 1(I) and alpha 2(I) collagen gene expression in pulmonary fibrosis induced by endotracheal bleomycin injection. Lab. Invest., 70, 192-202