DOI QR코드

DOI QR Code

나노유체의 열전도율 실험과 열전달 메커니즘의 제시

Heat Conductivity Test and Conduction Mechanism of Nanofluid

  • 박권하 (한국해양대학교 기계정보공학부) ;
  • 이진아 (한국해양대학교 기계공학과 대학원) ;
  • 김혜민 (국방과학연구소)
  • 발행 : 2008.09.30

초록

Many studies have been conducted to increase heat transfer in fluid. One of the various heat transfer enhancement techniques is suspending fine metallic or nonmetallic solid powder in traditional fluid. Nanofluid is defined as a new kind of heat transfer fluid containing a very small quantity of nanometer particles that are uniformly and stably suspended in a liquid. This study investigates the effect of nanofluid containing diamond, CuNi and CuAg nanometer particles, and proposes the heat transport mechanism of nanofluid. The test result shows that the thermal conductivity of nanofluid is much higher than that of traditional fluid, and the increasing rate of the conductivity is dependent on the conductivity of the solid metal.

키워드

참고문헌

  1. S.U.S. Choi, Enhancing thermal conductivity of fluids with nanoparticles, in: D.A. Siginer, H.P. Wang,(Eds.), Developments and Applications of Non-Newtonain Flows, ASME, New York, FED-Vol. 231/MD-Vol. 66, pp.99-105, 1995
  2. Q.Z. Xue, Model for effective thermal conductivity of nanofluids, Phys. Lett. A, Vol. 307, pp.313-317, 2003 https://doi.org/10.1016/S0375-9601(02)01728-0
  3. W. Yu, S.U.S. Choi, The role of interfacial layers in the enhanced thermal conductivity of nanofluids: A renovated Maxwell model, J. Nanoparticle Research, Vol. 5, pp.167-171, 2003 https://doi.org/10.1023/A:1024438603801
  4. P. Keblinski, S.R. Phillpot, S.U.S. Choi, J.A. Eastman, Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids), Int. J. Heat and Mass Transfer, Vol. 45, pp.855-863, 2002 https://doi.org/10.1016/S0017-9310(01)00175-2
  5. Y. Xuan, Q. Li, Investigation on convection heat transfer and flow features of nanofluids, J. Heat Transfer, vol. 125, pp.151-155, 2003 https://doi.org/10.1115/1.1532008
  6. Y. Xuan, Q. Li, Heat transfer enhancement of nanofluids, Int. J. Heat and Fluid Flow, Vol. 21, pp.58-64, 2000 https://doi.org/10.1016/S0142-727X(99)00067-3
  7. Y. Xuan, W. Roetzel, Conceptions for heat transfer correlation of nanofluids, Int. J. Heat and Mass Transfer, Vol. 43, pp.3701-3707, 2000 https://doi.org/10.1016/S0017-9310(99)00369-5
  8. J.A. Eastman, S.U.S. Choi, S. Li, W. Yu, L.J. Thompson, Anomalously increased effective thermal conductivities of ethylene glycol- based nanofluids containing copper nano- particles, Appl. Phys. Lett., Vol. 78 (6), pp. 718-720, 2001 https://doi.org/10.1063/1.1341218
  9. S. Lee, S.U.S. Choi, S. Li, J.A. Eastman, Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles, ASME J. Heat Transfer, Vol. 121, pp.280, 1999 https://doi.org/10.1115/1.2825978
  10. H.Q. Xie, J.C. Wang, T.G. Xi, Y. Liu, F. Ai, Thermal conductivity enhancement of suspensions containing nanosized alumina particles, J. Appl. Phys., Vol. 91, pp.4568-4572, 2002 https://doi.org/10.1063/1.1454184
  11. S.U.S. Choi, Z.G. Zhang, W. Yu, F.E. Lockwood, E.A. Grulke, Anomalous thermal conductivity enhancement in nanotube suspensions, Appl. Phys. Lett., Vol. 79, pp.2252-2254, 2001 https://doi.org/10.1063/1.1408272
  12. K. Park and H. B. Ma, Nanofluid effect on heat transport capability in a well-balanced oscillating heat pipe, Journal of thermophysics and heat transfer, AIAA, Vol. 21, No. 2, pp. 443-445, 2007 https://doi.org/10.2514/1.22409
  13. H. B. Ma, C. Wilson, Q. Yu, K. Park, U. S. Choi and Murli Tirumala, An experimental investigation of heat transport capability in a nanofluid oscillating heat pipe, ASME Journal of heat transfer, Vol. 128, No. 11, pp. 1213-1216, 2006 https://doi.org/10.1115/1.2352789

피인용 문헌

  1. Convective heat transfer characteristics of diamond nanofluid produced by matrix synthetic method vol.37, pp.1, 2013, https://doi.org/10.5916/jkosme.2013.37.1.9
  2. Thermal conductivity characteristics of commercial heat exchange fluids applying diamond nano-powder vol.38, pp.1, 2014, https://doi.org/10.5916/jkosme.2014.38.1.1