• Title/Summary/Keyword: Diamond

Search Result 2,365, Processing Time 0.036 seconds

The Rationalization of Distribution Structure in Diamond Market and Study on Diamond Grading System In Korea (다이아몬드의 유통구조와 국내감정 현황에 관한 연구)

  • Lee, Sang-Ki
    • Journal of Distribution Science
    • /
    • v.14 no.4
    • /
    • pp.103-110
    • /
    • 2016
  • Purpose - This study investigates the improvement of rationalization of distribution structure in Korean diamond market. It also explores the international distribution of diamond and how the distribution of Korean diamond market system was improved. This study also for providing the evaluation method in case of purchasing diamond on the consumers. Research Design, Data, and Methodology - The research investigates how international diamond distribution market has been changed since 1933 by De Beers. The international Diamond rough stone has been deregulated in supply and demand by Debeers since July, 2000, therefore, the price maintenance policy of diamond market also has been changed. In the short term, the diamond price in market has been down, whereas, in the long term, the market share of Debeers has affected the high quality of diamond price in world market. Before 1985, both G color and VVS1 clarity were used as the level of percentages in the diamond certificate of authenticity in Korea. But, after 1985, the diamond certificate of authenticity uses Diamond Grading Report. Results - Between the 1970's and 1980's, Debeers had controlled about 80 percentages of international diamond supply market. But, Debeers share in diamond market fell by 60 percentages in 2000's. Debeers supplied 31%(4390 carets) of international diamond supply and 41%(39 billion dollars) in 2003. However, Debeers shares 50% of market shares in the diamond supply market by Alosa in Russia. In Korea, the diamond grading report system has been used since 1985. But, the diamond grading report system has price bubbles and much irrational parts in grading system methods. Conclusions - 4C, the grading system of diamond, is a method for comparing and evaluating diamond objectively. Diamond is graded according to its color, cut, clarity, and carat. The price of diamond is determined based on its each item. Consumers purchase diamond for the purpose of investment and wearing. In terms of investment, it is recommended to purchase diamond with color of D grade, cut with Excellent or Very Good Cut grade, Clarity of FL or IF, and more than 3 carat. As for wearing purpose, it is highly recommended for diamond to have color of F or G grade, cut of Excellent or Very Good Cut, clarity of VS2 or SI1, and more than 1 carat Before 2000, Central Selling Organization(CSO) distributed about 80 percentages rough diamond to world market exclusively by purchase, classification, assessment, and sales. After 2000, Dbeers diamond company looses slowly market shares, while Almosa diamond company etc. in Russia are taking over world market shares more and more. Debeers market shares have been falling over the years, and the international diamond markets are gradually growing by other international diamond companies. But, there is no change in Korean diamond market after 1980's. Korean diamond distribution needs to follow international level of Diamond Grading System. By using different grading systems with different panel members, Korean diamond grading system needs to follow international perfect grading systems to grow diamond markets and maintain within top 10 diamond markets countries.

Interfacial Characteristics and Mechanical Properties of HPHT Sintered Diamond/SiC Composites (초고압 소결된 다이아몬드/실리콘 카바이드 복합재료의 계면특성 및 기계적 특성)

  • Park, Hee-Sub;Ryoo, Min-Ho;Hong, Soon-Hyung
    • Journal of Powder Materials
    • /
    • v.16 no.6
    • /
    • pp.416-423
    • /
    • 2009
  • Diamond/SiC composites are appropriate candidate materials for heat conduction as well as high temperature abrasive materials because they do not form liquid phase at high temperature. Diamond/SiC composite consists of diamond particles embedded in a SiC binding matrix. SiC is a hard material with strong covalent bonds having similar structure and thermal expansion with diamond. Interfacial reaction plays an important role in diamond/SiC composites. Diamond/SiC composites were fabricated by high temperature and high pressure (HPHT) sintering with different diamond content, single diamond particle size and bi-modal diamond particle size, and also the effects of composition of diamond and silicon on microstructure, mechanical properties and thermal properties of diamond/SiC composite were investigated. The critical factors influencing the dynamics of reaction between diamond and silicon, such as graphitization process and phase composition, were characterized. Key factor to enhance mechanical and thermal properties of diamond/SiC composites is to keep strong interfacial bonding at diamond/SiC composites and homogeneous dispersion of diamond particles in SiC matrix.

Measurement of Cohesion Force between Diamond and Matrix in CMP Pad Conditioner

  • Kang, Seung-Koo;Song, Min-Seok;Jee, Won-Ho
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1128-1129
    • /
    • 2006
  • Currently Chemical Mechanical Planarization (CMP) has become an essential step in the overall semiconductor wafer fabrication technology. Especially the CMP pad conditioner, one of the diamond tools, is required to have strong diamond cohesion. Strong cohesion between diamond and metal matrix prevents macro scratch on the wafer during CMP Process. Typically the diamond tool has been manufactured by sintered, brazed and electro-plated methods. In this paper, some results will be reported of cohesion between diamond and metal matrix of the diamond tools prepared by three different manufacturing methods. The cohesion force of brazed diamond tool is found stronger than the others. This cohesion force is increased in reverse proportion to the contact area of diamond and metal matrix. The brazed diamond tool has a strong chemical combination of the interlayer composed of Cr in metal matrix and C in diamond, which enhance the interfacial cohesion strength between diamonds and metal matrix.

  • PDF

The Revolution of Diamond Synthesis Technology

  • Sung, James-C.;Hu, Shao-Chung;Lin, I-Chiao;Tsai, Chia-Cheng
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1136-1137
    • /
    • 2006
  • The ultrahigh pressure process for synthesizing diamond grits is due to make a quantum leap: the raw materials will incorporate diamond seeds with a predetermined pattern. The result is doubling the diamond yield with a narrower size distribution. Moreover, the shape of diamond crystals can be precisely tuned. For example, diamond octahedra or diamond cubes, that are not available today, can be mass-produced. The new technology is now being implemented worldwide so the future diamond grits will have improved quality at reduced prices.

  • PDF

Effect of Ti Coated Diamond Grit on Performance of Diamond Tool (티타늄 코팅 된 다이아몬드 지립이 다이아몬드 공구의 성능에 미치는 영향)

  • 임동필;임대순;민언기;임종관
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.242-246
    • /
    • 1997
  • Diamond grit was coated with Ti by RF Sputtering to investigate the effect of coated diamond particles on performance of diamond impregnated saw. Coated and uncoated powders were separately mixed with 70Co-30W(wt %) powders by conventional milling technique. Hot pressing was carried out to make specimens. The wear test were carried out with these two types of diamond impregnated specimens. It was demonstrated that Ti coating was effective in improving the ability of grit retention and thus enhanced the tribological performance of diamond tool.

  • PDF

Effect of Ti Coated Diamond Grit on Performance of Diamond Tool (티타늄 코팅된 다이아몬드 지립이 다이아몬드 공구의 성능에 미치는 영향)

  • 임동필;임대순;민언기;임종관
    • Tribology and Lubricants
    • /
    • v.13 no.3
    • /
    • pp.102-107
    • /
    • 1997
  • Diamond grit was coated with Ti by RF Sputtering to investigate the effect of coated diamond particles on performance of diamond impregnated saw. Coated and uncoated powders were separately mixed with 70Co-30W powders by conventional milling technique. Hot pressing was carried out to make specimens. The wear test were carried out with these two types of diamond impregnated specimens. It was demonstrated that Ti coating was effective in improving the ability of grit retention and thus enhanced the tribological performance of diamond tool.

The properties of pad conditioning according to manufacturing methods of CMP pad conditioner (CMP 패드 컨디셔너의 제조공법에 따른 패드 컨디셔닝 특성)

  • Kang S.K.;Song M.S.;Jee W.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.362-365
    • /
    • 2005
  • Currently Chemical Mechanical Planarization (CMP) has become an essential step in the overall semiconductor wafer fabrication technology. Especially the CMP pad conditioner, one of the diamond tools, is required to have strong diamond retention. Strong cohesion between diamond grits and metal matrix prevents macro scratch on the wafer. If diamond retention is weak, the diamond will be pulled out of metal matrix. The pulled diamond grits are causative of macro scratch on wafer during CMP process. Firstly, some results will be reported of cohesion between diamond grits and metal matrix on the diamond tools prepared by three different manufacturing methods. A measuring instrument with sharp cemented carbide connected with a push-pull gauge was manufactured to measure the cohesion between diamond grits and metal matrix. The retention force of brazed diamond tool was stronger than the others. The retention force was also increased in proportion to the contact area of diamond grits and metal matrix. The brazed diamond tool has a strong chemical combination of the interlayer composed of chrome in metal matrix and carbon which enhance the interfacial cohesion strength between diamond grits and metal matrix. Secondly, we measured real-time data of the coefficient of friction and the pad wear rate by using CMP tester (CETR, CP-4). CMP pad conditioner samples were manufactured by brazed, electro-plated and sintered methods. The coefficient of friction and the pad wear rate were shown differently according to the arranged diamond patterns. Consequently, the coefficient of friction is increased according as the space between diamonds is increased or the concentration of diamonds is decreased. The pad wear rate is increased according as the degree of diamond protrusion is increased.

  • PDF

Preparation and Crystalline Growth Properties of Diamond Thin Film by Microwave Plasma CVD (MWPCVD법에 의한 다이아몬드 박막의 제조 및 결정성장 특성)

  • ;;A. Fujishima
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.905-908
    • /
    • 2000
  • The growth properties of diamond grain were examined by Raman spectroscopy and microscope images. Diamond thin films were prepared on single crystal Si wafers by microwave Plasma chemical vapor deposition. Preparation conditions, substrate temperature, boron concentration and deposition time were controlled differently. Prepared diamond thin films have different surface morphology and grain size respectively Diamond grain size was gradually changed by substrate temperature. The biggest diamond grain size was observed in the substrate, which has highest temperature. The diamond grain size by boron concentration was slightly changed but morphology of diamond grain became amorphous according to increasing of boron concentration. Time was also needed to be a big diamond grain. However, time was not a main factor for being a big diamond grain. Raman spectra of diamond film, which was deposited at high substrate temperature, showed sharp peaks at 1334$cm^{-1}$ / and these were characteristics of crystalline diamond. A broad peak centered at 1550$cm^{-1}$ /, corresponding to non-diamond component (sp$^2$carbon), could be observed in the substrate, which has low temperature.

  • PDF

Nucleation and Growth of Diamond in High Pressure

  • Choi, Jun-Youp;Park, Jong-Ku;Kang, Suk-Joong L.;Kwang, Yong-Eun
    • The Korean Journal of Ceramics
    • /
    • v.2 no.4
    • /
    • pp.221-225
    • /
    • 1996
  • In diamond synthesis by metal film growth method under high pressure and high temperature, the nucleation and growth of diamond was observed dependent on the carbon source variation from graphite powder to the heat treated powders of lamp black carbon. At the low driving force condition near equilibrium pressure and temperature line, nucleation of diamond did not occur but growth of seed diamond appeared in the synthesis from lamp black carbon while both nucleation and growth of diamond took place in the synthesis from graphite. Growth morphology change of diamond occurred from cubo-octahedron to octahedron in the synthesis from graphite but very irregular growth of seed diamond occurred in the synthesis from lamp block carbon. Lamp black carbon transformed to recrystallized graphite first and very nucleation of diamond was observed on the recrystallized graphite surface. Growth morphology of diamond on the recrystallized graphite was clear cubo-octahedron even at higher pressure departure condition from equilibrium pressure and temperature line.

  • PDF

Characteristics of Ni-coated diamond/Metal Composite Coatings by Cold Spray Deposition (니켈 코팅된 다이아몬드/금속 복합재의 저온분사 코팅특성)

  • Jung, Dong-Jin;Kim, Hyung Jun;Lee, Kee-Ahn
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.9
    • /
    • pp.550-557
    • /
    • 2009
  • In this study, bronze or SUS304 powders blended with 10 wt.% diamond particles were used to prepare metal/diamond composite materials deposited by cold spraying. The effects of matrix metal, diamond partical size, and the thickness of the Ni coating on the diamond were studied on Al 6061 substrate. The results showed that the hardness of the metal/diamond composite coating layers was higher than that of the same composite materials when using the sintering method. The fraction of diamond content in the coated layer increased when the metal matrix was soft. When the size of the diamond particles was reduced, the fraction of the diamond particles increased. In addition, in the case of diamond with a thicker Ni-coated layer, the fracturing of diamonds was mitigated in the composite coating layers.