Treatment of Food Waste Leachate using Lab-scale Two-phase Anaerobic Digestion Systems

실험실 규모 2상 혐기성 소화를 이용한 음식물 쓰레기 탈리액의 처리

  • Heo, Ahn-Hee (Department of Environmental Engineering, Inha University) ;
  • Lee, Eun-Young (Department of Environmental Engineering, Inha University) ;
  • Kim, Hee-Jun (Department of Environmental Engineering, Inha University) ;
  • Bae, Jae-Ho (Department of Environmental Engineering, Inha University)
  • Published : 2008.12.31

Abstract

This study was performed to evaluate the treatability of food waste leachate using lab-scale two-phase anaerobic digestion system. Effects of influent pH, hydraulic retention time (HRT), and recycle of methanogenic reactor effluent to the thermophilic acidogenic reactors were investigated. For methanogenic reactors, effects of internal solids recycle and temperature were studied. Performance of the acidogenic reactors was stable under the conditions of influent pH of 6.0 and HRT of 2 d with the recycle of methanogenic reactor effluent, and acidification and VS removal efficiency were about 30% and 40%, respectively. Up to the organic loading rate (OLR) of 7 g COD/L/d, effluent SCOD values of mesophilic and thermophilic methanogenic reactors either lower or kept the same with the internal solids recycle. Also, decreasing tendency in specific methane production (SMP) due to the organic loading increase became diminished with the internal solids recycle. Mesophilic methanogenic reactors showed higher TCOD removal efficiency and SMP than thermophilic condition under the same OLR as VSS was always higher under mesophilic condition. In sum, thermophilic acidogenesis-mesophilic methanogenesis system was found to be better than thermophilic-thermophilic system in terms of both organic removal and methane production.

본 연구에서는 실험실 규모 2상 혐기성 소화를 이용하여 음식물 쓰레기 탈리액의 처리성을 평가하였다. 이를 위해 산발효조의 적정 유입 pH 및 HRT를 도출하고, 산발효조로의 메탄조 유출수 반송 효과, 메탄발효조에서 고형물 내부반송 및 온도의 영향을 파악하였다. 산발효조에서는 유입 pH 6.0, HRT 2일인 조건에서 메탄조 유출수 반송 후 산생성 및 VS 제거효율은 30% 및 40%에서 안정적으로 유지되었다. 유기물 부하 7 g COD/L/d 이하의 조건에서 고형물 내부반송에 의해 중온 및 고온메탄발효조의 유출수 SCOD는 반송 이전보다 낮거나 같은 수준으로 유지되었고 유기물 부하 증가에 따른 비메탄생성량(specific methane production, SMP)의 감소폭이 줄어들었다. 고형물 내부반송 이후 동일한 유기물 부하에서 COD 제거효율과 SMP는 중온메탄발효조가 고온보다 우수하였으며 이는 중온메탄발효조의 MLVSS 농도가 고온보다 높기 때문인 것으로 판단되었다. 따라서 고온산발효-중온메탄발효로 구성된 시스템이 고온산발효-고온메탄발효보다 COD 제거와 메탄발생면에서 우수한 것으로 나타났다.

Keywords

References

  1. 환경부, 음식물류 폐기물 처리시설 발생폐수 육상처리 및 에너지화 종합대책(2008-2012), pp. 1-6(2007)
  2. Dinsdale, R. M., Hawkes, F. R., and Hawkes, D. L., "Mesophilic and thermophilic anaerobic digestion with thermophilic pre-acidification of instant-coffee-production wastewater," Water Res., 31(8), 1931-1938(1997) https://doi.org/10.1016/S0043-1354(97)00041-9
  3. Ghosh, S. and Pohland, F. G., "Kinetics of substrate assimilation and product formation in anaerobic digestion," J. Water Poll. Control Fed., 46, 748-759(1974)
  4. Cohen, A., Breure, A. M., Schmedding, D. J. M., Zoetemeyer, R. J., and van Andel, J. G., "Significance of partial pre-acidification of glucose for methanogenesis in an anaerobic digestion process," Appl. Microbiol. Biotechnol., 21, 404-408(1985) https://doi.org/10.1007/BF00249989
  5. Elefsiniotis, P. and Oldham, W. K., "Substrate degradation patterns in acid-phase anaerobic digestion of municipal primary sludge," Environ. Technol., 15, 741-751(1994) https://doi.org/10.1080/09593339409385480
  6. Lettinga, G., Hulshoff Pol, L. W., Koster, I. W., Wiegant, W. M., de Zeeuw, W. J., Rinzema, A., Grin, P. C., Roersma, R. E., and Hobma, S. W., "High rate anaerobic wastewater treatment using the UASB reactor under a wide range of temperature conditions," Biotechnol. Genet. Eng. Rev., 2, 253-284(1984)
  7. Alexiou, I. E., Anderson, G. K., and Evison, L. M., "Design of preacidification reactors for the anaerobic treatment of industrial wastewaters," Water Sci. Technol., 29, 199-204(1994)
  8. Dinopoulou, G., Rudd, T., and Lester, J. N., "Anaerobic acidogenesis of a complex waste-water, I. The influence of operation parameters on reactor performance," Biotechnol. Bioeng., 31(9), 958-968(1988) https://doi.org/10.1002/bit.260310908
  9. Suzuki, H., Yoneyama, Y., and Tanaka, T., "Acidification during anaerobic treatment of brewery wastewater," Water Sci. Technol., 35(8), 265-274(1997)
  10. Guerrero, L., Omil, F., Mendez, R., and Lema, J. M., "Anaerobic hydrolysis and acidogenesis of wastewaters from food industries with high content of organic solids and protein," Water Res., 33(15), 3281-3290(1999) https://doi.org/10.1016/S0043-1354(99)00041-X
  11. Yu, H., Fang, H. H. P., and Gu, G., "Comparative performance of mesophilic and thermophilic acidogenic upflow reators," Proc. Biochem., 38, 447-454(2002) https://doi.org/10.1016/S0032-9592(02)00161-9
  12. Kim, M., Ahn, Y., and Speece, R. E., "Comparative process stability and efficiency of anaerobic digestion; mesophilic vs. thermophilic," Water Res., 36, 4369-4385(2002) https://doi.org/10.1016/S0043-1354(02)00147-1
  13. Dugba, P. N. and Zhang, R., "Treatment of dairy wastewater with two-stage anaerobic sequencing batch reactor systems-thermophilic versus mesophilic operations," Bioresour. Technol., 68, 225-233(1999) https://doi.org/10.1016/S0960-8524(98)00156-4
  14. 환경부 고시 제 2004-188호, "수질오염공정시험방법," (2006)
  15. APHA, Standard Methods for the Examination of Water and Wastewater, 20th ed., New York(1998)
  16. Bouallagui, H., Torrijos, M., Godon, J. J., Moletta, R., Cheikh, R. B., Touhami, Y., Delgenes, J. P., and Hamdi, M., "Two-phase anaerobic digestion of fruit and vegetable wastes: bioreactors performance," Biochem. Eng. J., 21, 193-197(2004) https://doi.org/10.1016/j.bej.2004.05.001
  17. Song, Y., Kwon, S., and Woo, J., "Mesophilic and thermophilic temperature co-phase anaerobic digestion compared with single-stage mesophilic- and thermophilic digestion of sewage sludge," Water Res., 38, 1653-1662(2004) https://doi.org/10.1016/j.watres.2003.12.019
  18. Mladenovska, Z. and Ahring, K., "Growth kinetics of thermophilic Methanosarcina spp. isolated from full-scale biogas plants treating animal manures," FEMS Microbiology Ecology, 31(3), 225-229(2000) https://doi.org/10.1111/j.1574-6941.2000.tb00687.x
  19. Speece, R. E., Anaerobic biotechnology for industrial wastewaters, Archae Press, Nashville, TN(1996)
  20. Zeikus, G., "Thermophilic bacteria: ecology, physiology, and technology," Enzyme Microb. Technol., 1, 243-251 (1979) https://doi.org/10.1016/0141-0229(79)90043-7