Heterologous Expression of ${\alpha}$-Amylase Gene of Bifidobacterium adolescentis Int57 in Bacillus polyfermenticus SCD

  • Paik, Hyun-Dong (Division of Animal Life Science, Konkuk University) ;
  • Kim, Il-Gi (Department of Biomedical Science, Hallym University) ;
  • Lee, Jin-Hyoung (Department of Biomedical Science, Hallym University) ;
  • Lee, Jang-Hyun (Division of Animal Life Science, Konkuk University) ;
  • Park, Kyu-Yong (Department of Food Science and Biotechnology, Kyungnam University) ;
  • Ji, Geun-Eog (Department of Food Science and Nutrition, Seoul National University) ;
  • Jin, Tae-Eun (Department of Biomedical Science, Hallym University) ;
  • Rhim, Seong-Lyul (Department of Biomedical Science, Hallym University)
  • 발행 : 2007.08.31

초록

Bacillus polyfermenticus SCD was transformed by the recombinant shuttle vector for Bacillus and Escherichia coli containing 3 antibiotic resistant genes and an ${\alpha}$-amylase gene from Bifidobacterium adolescentis Int57. The ${\alpha}$-amylase gene fused to a secretion sequences was expressed under the control of the promoter of amylase gene from B. subtilis var. natto. The recombinant plasmid was maintained stably in the transformants producing the ${\alpha}$-amylase. The enzyme was secreted to outside of the cell and showed the similar enzyme activity as that of Bacillus subtilis BD170 under the same conditions of pH and growth temperature. Because of the relatively easy transformation and the secretion of the enzyme, the transformants of B. polyfermenticus SCD may give a new strategy in the production of foreign genes.

키워드

참고문헌

  1. Lee KH, Jun KD, Kim WS, Paik HD. Partial characterization of polyfermenticin SCD, a newly identified bacteriocin of Bacillus polyfermenticus. Lett. Appl. Microbiol. 32: 146-151 (2001) https://doi.org/10.1046/j.1472-765x.2001.00876.x
  2. Jun KD, Lee KH, Kim WS, Paik HD. Microbiological identification of medical probiotic Bispan strain. Korean J. Appl. Microbiol. Biotechnol. 28: 124-127 (2000)
  3. Lee KH, Park KY, Kim SM, Kim WS, Paik HD. Development of a culture medium for growth and sporulation of Bacillus polyfermenticus SCD. Korean J. Food Sci. Technol. 34: 263-268 (2002)
  4. Jayaprakasha HM, Yoon YC, Paik HD. Probiotic functional dairy foods and health claims: an overview. Food Sci. Biotechnol. 14: 523-528 (2005)
  5. Matsuzaki T, Chin J. Modulating immune responses with probiotic bacteria. Immunol. Cell Biol. 78: 67-73 (2000) https://doi.org/10.1046/j.1440-1711.2000.00887.x
  6. Nardi RD, Santos ARM, Carvalho MAR, Farias LM, Benchetrit LC, Nicoli JR. Antagonism against anaerobic and facultative bacteria through a diffusible inhibitory compound produced by a Lactobacillus sp. isolated from the rat fecal microbiota. Anaerobe 5: 409-411 (1999) https://doi.org/10.1006/anae.1999.0217
  7. Park E, Park JS, Choi SY, Kim KT, Paik HD. Influence of functional food containing Bacillus polyfermenticus SCD on lipid and antioxidant metabolisms in rats fed a high-fat and highcholesterol diet. Food Sci. Biotechnol. 14: 766-771 (2005)
  8. Park E, Park JS, Paik HD. Effect of Bacillus polyfermenticus SCD and its bacteriocin on MNNG-induced DNA damage. Food Sci. Biotechnol. 13: 684-688 (2004)
  9. Park JS, Kim KT, Kim HS, Paik HD, Park E. Effect of a functional food containing Bacillus polyfermenticus on dimethylhydrazineinduced colon aberrant crypt formation and the antioxidant system in fisher 344 male rats. Food Sci. Biotechnol. 15: 980-985 (2006)
  10. Paik HD, Lee NK, Lee KH, Hwang YI, Pan JG. Identification and partial characterization of cerein BS229, a bacteriocin produced by Bacillus cereus BS229. J. Microbiol. Biotechn. 10: 195-200 (2000)
  11. Pearson D, Ward OP. Effect of culture conditions on growth and sporulation of Bacillus thuringiensis subsp. israelensis and development of media for production of the protein crystal endotoxin. Biotechnol. Lett. 10: 451-456 (1988) https://doi.org/10.1007/BF01027055
  12. Rhim SL, Park MS, Ji GE. Expression and secretion of Bifidobacterium adolescentis amylase by Bifidobacterium longum. Biotechnol. Lett. 28: 163-168 (2006) https://doi.org/10.1007/s10529-005-5330-9
  13. Brückner R. A series of shuttle vectors for Bacillus subtilis and Eschrichia coli. Gene 122: 187-192 (1992) https://doi.org/10.1016/0378-1119(92)90048-T
  14. Yuuki T, Nomura T, Tezuka H, Tsuboi A, Yamagata H, Tsukagoshi N, Udaka S. Complete nucleotide sequence of a gene coding for heat- and pH-stable $\alpha$-amylase of Bacillus licheniformis: Comparison of the amino acid sequences of three bacterial liquefying $\alpha$- amylases deduced from DNA sequences. J. Biochem. 98: 1147- 1156 (1985) https://doi.org/10.1093/oxfordjournals.jbchem.a135381
  15. Lam KHE, Chow KC, Wong WKR. Construction of an efficient Bacillus subtilis system for extracellular production of heterologous proteins. J. Biotechnol. 63: 167-177 (1998) https://doi.org/10.1016/S0168-1656(98)00041-8
  16. Sadie Y, Kada T. Formation of competent Bacillus subtilis cells. J. Bacteriol. 153: 813-821 (1983)
  17. Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428 (1959) https://doi.org/10.1021/ac60147a030
  18. Birnboim HC, Doly JA. Rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 7: 1513- 1523 (1979) https://doi.org/10.1093/nar/7.6.1513
  19. Lin CF, Fung ZF, Wu CL, Chung TC. Molecular characterization of a plasmid-borne (pTC82) chloramphenicol resistance determinant (cat-TC) from Lactobacillus reuteri G4. Plasmid 36: 116-124 (1996) https://doi.org/10.1006/plas.1996.0039