Higher Order Parabolic Wave Equations

고차 포물형 파랑 근사식

  • 서승남 (한국해양연구원 연안개발연구본부) ;
  • 이동영 (한국해양연구원 연안개발연구본부)
  • Published : 2007.06.30

Abstract

Parabolic approximation wave models based on $Pad{\acute{e}}$ approximants are analyzed in order to calculate wave transformation. In this study a $Pad{\acute{e}}(2,2)$ parabolic approximation model is developed to increase the accuracy of computation in comparison with the existing models. Numerical studies on a constant sloping bed show that the new model proves to allow for much more successful treatment of large angles of incidence than is possible using the previously available models.

파랑변형을 계산하기 위한 $Pad{\acute{e}}$ 근사에 의한 포물형 근사모형들을 분석하였다. 기존 포물형 근사모형 보다 정밀도가 높은 $Pad{\acute{e}}(2,2)$ 근사모형을 제시하였고 일정 경사면에 대한 수치실험을 통해 본 모형은 기존의 모형보다 입사각이 큰 경우에도 성공적으로 적용할 수 있음을 입증하였다.

Keywords

References

  1. 서승남, 이종찬 (2006). 수정 완경사 파랑식에 대한 포물형 근사식 모형, 한국 해안.해양공학회지, 18(4), 360-371
  2. Berkhoff, J.C.W., (1972). Computation of combined refractiondiffraction. Proc. 13th Coastal Eng. Conf., 1, 471-490
  3. Berkhoff, J.C.W., Booij, N. and Radder, A.C., (1982). Verification of numerical wave propagation models for simple harmonic linear waves, Coastal Eng. 6, 255-279 https://doi.org/10.1016/0378-3839(82)90022-9
  4. Booij, N., (1981). Gravity waves on water with non-uniform depth and current. Report 81-1, Dept. of Civil Eng., Delft Univ. Technology
  5. Chamberlain, P.G. and Porter, D., (1995). The modified mildslope equation, J. Fluid Mech., 291, 393-407 https://doi.org/10.1017/S0022112095002758
  6. Dean, R.G. and Dalrymple, R.A., (1984). Water wave mechanics for engineers and scientists, Prentice-Hall, Englewood Cliffs, New Jersey
  7. Jain, M.K., Iyengar S.R.K. and Jain R.K., (1985). Numerical Methods for Scientific and Engineering Computation, Wiley Eastern Ltd., New Delhi, India
  8. Kirby, J.T., (1986a). Higher order approximations in the parabolic equation method for water waves, J. Geophys. Res., 91, 933-952 https://doi.org/10.1029/JC091iC01p00933
  9. Kirby, J.T., (1986b). Rational approximations in the parabolic equation method for water waves, Coastal Eng., 10, 355-378 https://doi.org/10.1016/0378-3839(86)90021-9
  10. Kirby, J.T. and Dalrymple, R.A., (1986). Approximate model for nonlinear dispersion in monochromatic wave propagation, Coastal Eng., 9, 545-561 https://doi.org/10.1016/0378-3839(86)90003-7
  11. Liu, P. L.-F., (1990). Wave transformation, In: B. LeMehaute, and D. M. Hanes(Editors), The Sea, Ocean Engineering Science Vol. 9, 27-63, Wiley, New York
  12. Miles, J.W. and Chamberlain, P.G., (1998). Topographical scattering of gravity waves, J. Fluid Mech., 361, 175-188 https://doi.org/10.1017/S002211209800857X
  13. Mordane, S., Mangoub G., Maroihi K. L. and Chagdali M., (2004). A parabolic equation based on a rational quadratic approximation for surface gravity wave propagation, Coastal Eng., 50, 85-95 https://doi.org/10.1016/j.coastaleng.2003.09.001
  14. Press, W.H., Flannery, B.P., Teukolsky, S.A. and Vetterling, W.T., (1986). Numerical Recipes: The Art of Scientific Computing, Cambridge University Press
  15. Radder, A.C., (1979), On the parabolic equation method for water-wave propagation, J. Fluid Mech., 95, 159-176 https://doi.org/10.1017/S0022112079001397