Surface Modification of Glass Chip for Peptide Microarray

펩타이드 Microarray를 위한 유리 칩의 표면 개질

  • Cho, Hyung-Min (Bioprocessing Research Laboratory, Department of Bionanotechnology, Hanyang University) ;
  • Lim, Chang-Hwan (Bioprocessing Research Laboratory, Department of Bionanotechnology, Hanyang University) ;
  • Neff, Silke (Department of Biotechnology, University of Natural Resources and Applied Life Sciences) ;
  • Jungbauer, Alois (Department of Biotechnology, University of Natural Resources and Applied Life Sciences) ;
  • Lee, Eun-Kyu (Bioprocessing Research Laboratory, Department of Bionanotechnology, Hanyang University)
  • 조형민 (한양대학교 바이오나노공학과 생물공정연구실) ;
  • 임창환 (한양대학교 바이오나노공학과 생물공정연구실) ;
  • ( ) ;
  • ( ) ;
  • 이은규 (한양대학교 바이오나노공학과 생물공정연구실)
  • Published : 2007.08.30

Abstract

Peptides are frequently studied as candidates for new drug development. Recently, synthesized peptide library is screened for a certain functionality on a microarray biochip format. In this study, in order to replace the conventional cellulose membrane with glass for a microarray chip substrate for peptide library screening, we modified the glass surface from amines to thiols and covalently immobilized the peptides. Using trypsin-FITC (fluorescein isothiocyanate) conjugate that could specifically bind to a trypsin binding domain consisting of a 7-amino acid peptide, we checked the degree of surface modification. Because of the relatively lower hydrophilicity and reduced surface roughness, the conjugation reaction to the glass required a longer reaction time and a higher temperature. It took approximately 12 hr for the reaction to be completed. From the fluorescence signal intensity, we could differentiate between the target and the control peptides. This difference was confirmed by a separate experiment using QCM. Furthermore, a smaller volume and higher concentration of a spot showed a higher fluorescence intensity. These data would provide the basic conditions for the development of microarray peptide biochips.

본 실험에서는 마이크로어레이 형태로 펩타이드와의 공유결합에 의한 고정화를 시키기 위해 유리 칩의 표면을 아민기에서 thiol기로 개질하였다. 펩타이드의 lysine기와 thiol기와의 공유결합반응에는 12시간 정도의 반응시간이 필요하였고 실온보다는 35$^{\circ}C$가 유리함을 확인하였다. Trypsin-FITC와의 반응을 통해 trypsin 결합부위를 가진 target 펩타이드가 control 펩타이드보다 더 높은 형광 신호를 나타냄을 확인하였고, 이를 통해 target 펩타이드를 마이크로어레이 상에서 식별할 수 있었다. 이 trypsin-FITC와의 결합 친화도 차이를 별도의 QCM 실험을 통해서도 확인하였다. 또한 작은 부피의 spot과 높은 농도의 펩타이드 용액이 더욱 높은 표면형광신호를 생성함을 확인하였다. 본 실험을 통해 펩타이드 마이크로어레이 칩 개발을 위한 기초 조건을 확립하였다.

Keywords

References

  1. Sompuram, S. R., K. Vani, L. Wei, H. Ramanathan, S. aiken, and S. A. Bogen (2004), A water-stable protected isocyanate glass array substrate, Anal. Biochem. 326, 55-68 https://doi.org/10.1016/j.ab.2003.11.008
  2. Shim, H. Y., S. H. Lee, D. J. Ahn, K. D. Ahn, and J. M. Kim (2004), Micropatterning of diacetylenic liposomes on glass surfaces, Mat. Sci. Eng. C 24, 157-161 https://doi.org/10.1016/j.msec.2003.09.067
  3. Taylor, R. H., S. M. Fournier, B. L. Simons, H. Kaplan, and M. A. Hefford (2005), Covalent protein immobilization on glass surface: application to alkaline phosphatase, J. Biotechnol. 118, 265-269 https://doi.org/10.1016/j.jbiotec.2005.05.007
  4. Olle, E. W., J. Messamore, M. P. Deogracias, S. D. Mcclintock, T. D. Anderson, and K. J. Johnson (2005), Comparison of antibody array substrates and the use of glycerol to normalize spot morphology, Exp. Mol. Pathol. 79, 206-209 https://doi.org/10.1016/j.yexmp.2005.09.003
  5. Deng, Y., X. Y. Zhu, T. Kienlen, and A. Guo (2006), Transport at the Air/Water interface is the reason for rings in protein microarrays, J. Am. Chem. Soc. 128, 2768-2769 https://doi.org/10.1021/ja057669w
  6. Lee, S. J. and S. Y. Lee (2004), Microarrays at peptides elevated on the protein layer for efficient protein kinase assay, Anal. Biochem. 330, 311-316 https://doi.org/10.1016/j.ab.2004.04.008
  7. Lee, C. S. and B. G. Kim (2002), Improvement of protein stability in protein microarray, Biotechnol. Lett. 24, 839-844 https://doi.org/10.1023/A:1015554705979
  8. Sreekumar, A., M. K. Nyati, and S. Varambally (2001), Profiling of cancer cells using protein microarrays: discovery of novel radiation regulated proteins, Cancer Res. 61, 7585-7593
  9. Cordek, J., X. Wang, and W. Tan (1999), Direct immobilization of glutamate dehydrogenase on optical fiber probes for ultrasensitive glutamte detection, Anal. Chem. 71, 1529-1533 https://doi.org/10.1021/ac980850l
  10. Hook, F., M. Rodahl, P. Brzeziniski, and B. Kasemo (1998), Energy dissipation kinetics for protein and antibody-antigen adsorption under shear oscillation on a quartz crystal microbalance, Langmuir 12, 729-734
  11. Rodahl, M., F. Hook, and B. Kasemo (1996), QCM operation in liquids: An explanation of measured variations in frequency and Q factor with liquid conductivity, Anal. Biochem. 68, 2219-2227
  12. Rodahl, M., F. Hook, A Krozer, P. Brzeziniski, and B. Kasemo (1995), Quartz crystal microbalance setup for frequency and Q factor measurements in gaseous and liquid environments, Rev. Sci. Instrum. 66, 3924-3930 https://doi.org/10.1063/1.1145396
  13. Barber, T. A., G. M. Harber, S. Park, M. Gilbert, and Healy K. E. (2005), Ligand density characterization of peptide modified biomaterial, Biomaterials 26, 6897-6905 https://doi.org/10.1016/j.biomaterials.2005.04.043
  14. Laurell, T., V. G. Marko (2002), Miniaturisation is mandatory unravelling the human proteome, Proteomics 2, 345-351 https://doi.org/10.1002/1615-9861(200204)2:4<345::AID-PROT345>3.0.CO;2-M
  15. Morozov, V. N. (2005), Principles and limitations, In Protein microarrays. M. Schena, Eds., p. 73, Jones and Bartlett publishers, Massachusetts, USA