Effect of Electrochemical Redox Reaction on Growth and Metabolism of Saccharomyces cerevisiae as an Environmental Factor

  • Na, Byung-Kwan (Department of Biological Engineering, Seokyeong University) ;
  • Hwang, Tae-Sik (Department of Biological Engineering, Seokyeong University) ;
  • Lee, Sung-Hun (Department of Biological Engineering, Seokyeong University) ;
  • Ahn, Dae-Hee (Department of Environmental Engineering and Biotechnology, Myung Ji University) ;
  • Park, Doo-Hyun (Department of Biological Engineering, Seokyeong University)
  • Published : 2007.03.31

Abstract

The effect of an electrochemically generated oxidation-reduction potential and electric pulse on ethanol production and growth of Saccharomyces cerevisiae ATCC 26603 was experimented and compared with effects of electron mediators (neutral red, benzyl viologen, and thionine), chemical oxidants (hydrogen peroxide and hypochlorite), chemical reductants (sulfite and nitrite), oxygen, and hydrogen. The oxidation (anodic) and reduction (cathodic) potential and electric pulse activated ethanol production and growth, and changed the total soluble protein pattern of the test strain. Neutral red electrochemically reduced activated ethanol production and growth of the test strain, but benzyl viologen and thionine did not. Nitrite inhibited ethanol production but did not influence growth of the test strain. Hydrogen peroxide, hypochlorite, and sulfite did not influence ethanol production and growth of the test strain. Hydrogen and oxygen also did not influence the growth and ethanol production. It shows that the test strain may perceive electrochemically generated oxidation-reduction potential and electric pulse as an environmental factor.

Keywords

References

  1. Bakker, B. M., C. Bro, P. Kötter, M. A. H. Luttik, J. P. van Dijken, and J. T. Pronk. 2000. The mitochondrial alcohol dehydrogenase Adh3p is involved in a redox shuttle in Saccharomyces cerevisiae. J. Bacteriol. 182: 4730-4737 https://doi.org/10.1128/JB.182.17.4730-4737.2000
  2. Bond, D. R. and D. R. Levley. 2005. Evidence for involvement of an electron shuttle in electricity generation by Geothrix fermentans. Appl. Environ. Microbiol. 71: 2186-2189 https://doi.org/10.1128/AEM.71.4.2186-2189.2005
  3. Bulik, D. A., M. Olczak, H. A. Lucero, B. C. Osmond, P. W. Robbins, and C. A. Specht. 2003. Chitin synthesis in Saccharomyces cerevisiae in response to supplementation of growth medium with glucosamine and cell wall stress. Eukaryot. Cell 2: 886-900
  4. Carlsson, J., G. Nyberg, and J. Wrethen. 1978. Hydrogen peroxide and superoxide radical formation in anaerobic broth media exposed to atmospheric oxygen. Appl. Environ. Microbiol. 36: 223-229
  5. Cho, J. Y. and T. W. Jeffries. 1998. Pichia stipitis genes for alcohol dehydrogenase with fermentative and respiratory functions. Appl. Envir. Microbiol. 64: 1350-1358
  6. Crueger, W. and A. Crueger. 1989. Biotechnology: A Textbook of Industrial Microbiology. 2nd Ed. pp. 62. Science Tech Publisher, MA, U.S.A
  7. Dombek, K. M. and L. O. Ingram. 1987. Ethanol production during batch fermentation with Saccharomyces cerevisiae: Changes in glycolytic enzymes and internal pH. Appl. Envir. Microbiol. 53: 1286-1291
  8. Dumont, M. E., J. B. Schlichter, T. S. Cardillo, J. K. Hayes, G. Bethlendy, and F. Sherman. 1993. CYC2 incodes a factor involved in mitochondrial import of yeast cytochromes C. Mol. Cell. Biol. 13: 6442-6451 https://doi.org/10.1128/MCB.13.10.6442
  9. Fey, A. and R. Conrad. 2000. Effect of temperature on carbon and electron flow and on the archaeal community in methanogenic rice field soil. Appl. Environ. Microbiol. 66: 4790-4797 https://doi.org/10.1128/AEM.66.11.4790-4797.2000
  10. Fultz, M. L. and R. A. Durst. 1982. Mediator compounds for the electrochemical study of biological redox system: A compilation. Anal. Chim. Acta 140: 1-18 https://doi.org/10.1016/S0003-2670(01)95447-9
  11. Gombert, A. K., M. M. dos Santos, B. Christensen, and J. Nielsen. Network identification and flux quantification in the central metabolism of Saccharomyces cerevisiae under different conditions of glucose repression. J. Bacteriol. 183: 1441-1451 https://doi.org/10.1128/JB.183.4.1441-1451.2001
  12. Gregory, E. M. and I. Fridovich. 1973. Oxygen toxicity and the superoxide dismutase. J. Bacteriol. 114: 1193-1197
  13. Haucke, V., A. M. Dudley, and T. L. Mason. 1994. Analysis of the sorting signals directing NADH-cytochrome b5 reductase to two locations within yeast mitochondria. Mol. Cell. Biol. 17: 4024-4032
  14. Hongo, M. and M. Iwahara. 1979. Application of electronenergizing method to L-glutamic acid fermentation. Agric. Biol. Chem. 43: 2075-2081 https://doi.org/10.1271/bbb1961.43.2075
  15. Iren, E. P., H. C. Mastwijk, P. V. Bartels, and E. J. Smid. 2000. Pulsed-electric field treatment enhances the bactericidal action of nisin against Bacillus cereus. Appl. Environ. Microbiol. 69: 2405-2408 https://doi.org/10.1128/AEM.69.4.2405-2408.2003
  16. Jeon, S. J., I. H. Shin, B. I. Sang, and D. H. Park. 2005. Electrochemical regeneration of FAD by catalytic electrode without electron mediator and biochemical reducing power. J. Microbiol. Biotechnol. 15: 281-286
  17. Jones, R. W., T. A. Gray, and P. B. Garland. 1976. A study of the permeability of the cytoplasmic membrane of Escherichia coli to reduced and oxidized benzyl viologen and methyl viologen cations: Complications in the use of viologens as redox mediators for membrane-bound enzymes. Biochemical Society Transaction, 563rd Meeting, London
  18. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685 https://doi.org/10.1038/227680a0
  19. Leagn, C., M. V. Coppi, and D. R. Levley. 2003. OmcB, a ctype polyheme cytochrome, involved in Fe(III)-reduction in Geobacter sulfureducens. J. Bacteriol. 185: 2096-2103 https://doi.org/10.1128/JB.185.7.2096-2103.2003
  20. Lesage, G. and H. Bussey. 2006. Cell wall assembly in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 70: 317-343 https://doi.org/10.1128/MMBR.00038-05
  21. Lloret, J., L. Bolanos, M. M. Lucas, J. M. Peart, N. J. Brewing, I. Bonilla, and R. Rivilla. 1995. Ionic strength and osmotic pressure induce different alterations in the lipopolysaccharide of a Rhizobium meliloti strain. Appl. Environ. Microbiol. 61: 3701-3704
  22. Luo, Q., H. Wang, X. Zhang, and Y. Qian. 2005. Effect of direct electric current on the cell surface properties of phenol-degrading bacteria. Appl. Environ. Microbiol. 71: 423-427 https://doi.org/10.1128/AEM.71.1.423-427.2005
  23. Madsen, E. L., A. J. Francis, and J. M. Bollag. 1988. Environmental factors affecting indole metabolism under anaerobic conditions. Appl. Envir. Microbiol. 54: 74-78
  24. McDermid, A. S., A. S. McKee, and P. D. Marsh. 1988. Effect of environmental pH on enzyme activity and growth of Bacteroides ginivalis W50. Infect. Immun. 56: 1096- 1100
  25. Na, B. K., B. I. Sang, D. W. Park, and D. H. Park. 2005. Influence of electric potential on structure and function of biofilm in wastewater treatment reactor: Bacterial oxidation of organic carbons coupled to bacterial denitrification. J. Microbiol. Biotechnol. 15: 1221-1228
  26. Nagodawithana, T. W., C. Castellano, and K. H. Steinkraus. 1974. Effect of dissolved oxygen, temperature, initial cell count, and sugar concentration on the viability of Saccharomyces cerevisiae in rapid fermentations. Appl. Environ. Microbiol. 28: 383-391
  27. Otto, K., H. Elwing, and M. Hermansson. 1999. Effect of ionic strength on initial interactions of Escherichia coli with surfaces, studied on-line by a novel quartz crystal microbalance technique. J. Bacteriol. 181: 5210-5218
  28. Park, D. H. and J. G. Zeikus. 1999. Microbial utilization of electrically reduced neutral red as the sole electron donor for growth and metabolite producion. Appl. Environ. Microbiol. 65: 2912-2917
  29. Park, D. H. and J. G. Zeikus. 1999. Utilization of electrically reduced neutral red by Actinobacillus succinogenes: Physiological function of neutral red in membrane-driven fumarate reduction and energy conservation. J. Bacteriol. 181: 2403-2410
  30. Park, D. H. and J. G. Zeikus. 2002. Impact of electrode composition on electricity generation in a single-compartment fuel cell using Shewanella putrefaciens. Appl. Microbiol. Biotechnol. 59: 58-61 https://doi.org/10.1007/s00253-002-0972-1
  31. Park, D. H. and J. G. Zeikus. 2003. Improved fuel cell and electrode designs for production of electricity from microbial degradation. Biotechnol. Bioengin. 81: 348-355 https://doi.org/10.1002/bit.10501
  32. Park, S. M., B. I. Sang, D. W. Park, and D. H. Park. 2005. Electrochemical reduction of xylose to xylitol by whole cells or crude enzyme of Candida peltata. J. Microbiol. 43: 451- 455
  33. Park, S. M., H. S. Kang, D. W. Park, and D. H. Park. 2005. Electrochemical control of metabolic flux of Weissella kimchii sk10: Neutral red immobilized in cytoplasmic membrane as electron channel. J. Microbiol. Biotechnol. 15: 80-85
  34. Patel, K. R., K. J. Mayberry-Carson, and P. F. Smith. 1978. Effect of external environmental factors on the morphology of Spiroplasma citri. J. Bacteriol. 133: 925-931
  35. Rajnicek, A. M., C. D. McCaig, and N. A. Gow. 1994. Electric fields induce curved growth of Enterobacter cloaceae, Escherichia coli, and Bacillus subtilus cells: Implications for mechanisms of galvanotropism and bacterial growth. J. Bacteriol. 176: 720-713
  36. Rao, G. and R. Mutharasan. 1987. Altered electron flow in continous cultures of Clostridium acetobutylicum induced by viologen dyes. Appl. Environ. Microbiol. 53: 1232-1235
  37. Roller, S. D., H. P. Bennetto, G. M. Delaney, J. R. Mason, J. L. Stirling, and C. F. Thurston. 1984. Electron-transfer coupling in microbial fuel cells: 1. Comparison of redoxmediator reduction rates and respiratory rates of bacteria. J. Chem. Tech. Biotechnol. 34B: 3-12
  38. Shin, H. S., M. K. Jain, and J. G. Zeikus. 2001. Evaluation of the electrochemical bioreactor system in biotransformation of $\beta$-tetralone to $\beta$-tetralol. Appl. Microbiol. Biotechnol. 57: 506-510 https://doi.org/10.1007/s002530100809
  39. Stoodley, P., D. deBeer, and H. M. Pappin-Scott. 1997. Influcnce of electric fields and pH on biofilm structure as related to the bioelectric effect. Antimicrob. Agents Chemother. 41: 1876-1879
  40. Thurston, C. F., H. P. Bennetto, G. M. Delaney, J. R. Mason, S. D. Roller, and J. L. Stirling. 1985. Glucose metabolism in a microbial fuel cell. Stoichiometry of product formation in a thionine-mediated Proteus vulgaris fuel cell and its relation to coulombic yields. J. Gen. Microbiol. 131: 1391-1401
  41. Tinoco, I. Jr., K. Sauer, and J. C. Wang. 1985. Physical Chemistry: Principles and Applications in Biological Sciences. 2nd Edition. pp. 111-168. Prentice Hall. New York
  42. Verho, R., J. Londesborough, M. Penttilä, and P. Richard. 2003. Engineering redox cofactor regeneration for improved pentose fermentation in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 69: 5892-5897 https://doi.org/10.1128/AEM.69.10.5892-5897.2003
  43. Waligora, A.-J., M.-C. Barc, P. Bourlioux, A. Collignon, and T. Karjalainen. 1999. Clostridium difficile cell attachment is modified by environmental factors. Appl. Envir. Microbiol. 65: 4234-4238
  44. Wouters, P. C., N. Dutreux, J. P. P. M. Smelt, and H. L. M. Lelieveld. 1999. Effects of pulsed electric fields on inactivation kinetics of Listeria innocua. Appl. Environ. Microbiol. 65: 5346-5371