References
- Bakker, B. M., C. Bro, P. Kötter, M. A. H. Luttik, J. P. van Dijken, and J. T. Pronk. 2000. The mitochondrial alcohol dehydrogenase Adh3p is involved in a redox shuttle in Saccharomyces cerevisiae. J. Bacteriol. 182: 4730-4737 https://doi.org/10.1128/JB.182.17.4730-4737.2000
- Bond, D. R. and D. R. Levley. 2005. Evidence for involvement of an electron shuttle in electricity generation by Geothrix fermentans. Appl. Environ. Microbiol. 71: 2186-2189 https://doi.org/10.1128/AEM.71.4.2186-2189.2005
- Bulik, D. A., M. Olczak, H. A. Lucero, B. C. Osmond, P. W. Robbins, and C. A. Specht. 2003. Chitin synthesis in Saccharomyces cerevisiae in response to supplementation of growth medium with glucosamine and cell wall stress. Eukaryot. Cell 2: 886-900
- Carlsson, J., G. Nyberg, and J. Wrethen. 1978. Hydrogen peroxide and superoxide radical formation in anaerobic broth media exposed to atmospheric oxygen. Appl. Environ. Microbiol. 36: 223-229
- Cho, J. Y. and T. W. Jeffries. 1998. Pichia stipitis genes for alcohol dehydrogenase with fermentative and respiratory functions. Appl. Envir. Microbiol. 64: 1350-1358
- Crueger, W. and A. Crueger. 1989. Biotechnology: A Textbook of Industrial Microbiology. 2nd Ed. pp. 62. Science Tech Publisher, MA, U.S.A
- Dombek, K. M. and L. O. Ingram. 1987. Ethanol production during batch fermentation with Saccharomyces cerevisiae: Changes in glycolytic enzymes and internal pH. Appl. Envir. Microbiol. 53: 1286-1291
- Dumont, M. E., J. B. Schlichter, T. S. Cardillo, J. K. Hayes, G. Bethlendy, and F. Sherman. 1993. CYC2 incodes a factor involved in mitochondrial import of yeast cytochromes C. Mol. Cell. Biol. 13: 6442-6451 https://doi.org/10.1128/MCB.13.10.6442
- Fey, A. and R. Conrad. 2000. Effect of temperature on carbon and electron flow and on the archaeal community in methanogenic rice field soil. Appl. Environ. Microbiol. 66: 4790-4797 https://doi.org/10.1128/AEM.66.11.4790-4797.2000
- Fultz, M. L. and R. A. Durst. 1982. Mediator compounds for the electrochemical study of biological redox system: A compilation. Anal. Chim. Acta 140: 1-18 https://doi.org/10.1016/S0003-2670(01)95447-9
- Gombert, A. K., M. M. dos Santos, B. Christensen, and J. Nielsen. Network identification and flux quantification in the central metabolism of Saccharomyces cerevisiae under different conditions of glucose repression. J. Bacteriol. 183: 1441-1451 https://doi.org/10.1128/JB.183.4.1441-1451.2001
- Gregory, E. M. and I. Fridovich. 1973. Oxygen toxicity and the superoxide dismutase. J. Bacteriol. 114: 1193-1197
- Haucke, V., A. M. Dudley, and T. L. Mason. 1994. Analysis of the sorting signals directing NADH-cytochrome b5 reductase to two locations within yeast mitochondria. Mol. Cell. Biol. 17: 4024-4032
- Hongo, M. and M. Iwahara. 1979. Application of electronenergizing method to L-glutamic acid fermentation. Agric. Biol. Chem. 43: 2075-2081 https://doi.org/10.1271/bbb1961.43.2075
- Iren, E. P., H. C. Mastwijk, P. V. Bartels, and E. J. Smid. 2000. Pulsed-electric field treatment enhances the bactericidal action of nisin against Bacillus cereus. Appl. Environ. Microbiol. 69: 2405-2408 https://doi.org/10.1128/AEM.69.4.2405-2408.2003
- Jeon, S. J., I. H. Shin, B. I. Sang, and D. H. Park. 2005. Electrochemical regeneration of FAD by catalytic electrode without electron mediator and biochemical reducing power. J. Microbiol. Biotechnol. 15: 281-286
- Jones, R. W., T. A. Gray, and P. B. Garland. 1976. A study of the permeability of the cytoplasmic membrane of Escherichia coli to reduced and oxidized benzyl viologen and methyl viologen cations: Complications in the use of viologens as redox mediators for membrane-bound enzymes. Biochemical Society Transaction, 563rd Meeting, London
- Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685 https://doi.org/10.1038/227680a0
- Leagn, C., M. V. Coppi, and D. R. Levley. 2003. OmcB, a ctype polyheme cytochrome, involved in Fe(III)-reduction in Geobacter sulfureducens. J. Bacteriol. 185: 2096-2103 https://doi.org/10.1128/JB.185.7.2096-2103.2003
- Lesage, G. and H. Bussey. 2006. Cell wall assembly in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 70: 317-343 https://doi.org/10.1128/MMBR.00038-05
- Lloret, J., L. Bolanos, M. M. Lucas, J. M. Peart, N. J. Brewing, I. Bonilla, and R. Rivilla. 1995. Ionic strength and osmotic pressure induce different alterations in the lipopolysaccharide of a Rhizobium meliloti strain. Appl. Environ. Microbiol. 61: 3701-3704
- Luo, Q., H. Wang, X. Zhang, and Y. Qian. 2005. Effect of direct electric current on the cell surface properties of phenol-degrading bacteria. Appl. Environ. Microbiol. 71: 423-427 https://doi.org/10.1128/AEM.71.1.423-427.2005
- Madsen, E. L., A. J. Francis, and J. M. Bollag. 1988. Environmental factors affecting indole metabolism under anaerobic conditions. Appl. Envir. Microbiol. 54: 74-78
- McDermid, A. S., A. S. McKee, and P. D. Marsh. 1988. Effect of environmental pH on enzyme activity and growth of Bacteroides ginivalis W50. Infect. Immun. 56: 1096- 1100
- Na, B. K., B. I. Sang, D. W. Park, and D. H. Park. 2005. Influence of electric potential on structure and function of biofilm in wastewater treatment reactor: Bacterial oxidation of organic carbons coupled to bacterial denitrification. J. Microbiol. Biotechnol. 15: 1221-1228
- Nagodawithana, T. W., C. Castellano, and K. H. Steinkraus. 1974. Effect of dissolved oxygen, temperature, initial cell count, and sugar concentration on the viability of Saccharomyces cerevisiae in rapid fermentations. Appl. Environ. Microbiol. 28: 383-391
- Otto, K., H. Elwing, and M. Hermansson. 1999. Effect of ionic strength on initial interactions of Escherichia coli with surfaces, studied on-line by a novel quartz crystal microbalance technique. J. Bacteriol. 181: 5210-5218
- Park, D. H. and J. G. Zeikus. 1999. Microbial utilization of electrically reduced neutral red as the sole electron donor for growth and metabolite producion. Appl. Environ. Microbiol. 65: 2912-2917
- Park, D. H. and J. G. Zeikus. 1999. Utilization of electrically reduced neutral red by Actinobacillus succinogenes: Physiological function of neutral red in membrane-driven fumarate reduction and energy conservation. J. Bacteriol. 181: 2403-2410
- Park, D. H. and J. G. Zeikus. 2002. Impact of electrode composition on electricity generation in a single-compartment fuel cell using Shewanella putrefaciens. Appl. Microbiol. Biotechnol. 59: 58-61 https://doi.org/10.1007/s00253-002-0972-1
- Park, D. H. and J. G. Zeikus. 2003. Improved fuel cell and electrode designs for production of electricity from microbial degradation. Biotechnol. Bioengin. 81: 348-355 https://doi.org/10.1002/bit.10501
- Park, S. M., B. I. Sang, D. W. Park, and D. H. Park. 2005. Electrochemical reduction of xylose to xylitol by whole cells or crude enzyme of Candida peltata. J. Microbiol. 43: 451- 455
- Park, S. M., H. S. Kang, D. W. Park, and D. H. Park. 2005. Electrochemical control of metabolic flux of Weissella kimchii sk10: Neutral red immobilized in cytoplasmic membrane as electron channel. J. Microbiol. Biotechnol. 15: 80-85
- Patel, K. R., K. J. Mayberry-Carson, and P. F. Smith. 1978. Effect of external environmental factors on the morphology of Spiroplasma citri. J. Bacteriol. 133: 925-931
- Rajnicek, A. M., C. D. McCaig, and N. A. Gow. 1994. Electric fields induce curved growth of Enterobacter cloaceae, Escherichia coli, and Bacillus subtilus cells: Implications for mechanisms of galvanotropism and bacterial growth. J. Bacteriol. 176: 720-713
- Rao, G. and R. Mutharasan. 1987. Altered electron flow in continous cultures of Clostridium acetobutylicum induced by viologen dyes. Appl. Environ. Microbiol. 53: 1232-1235
- Roller, S. D., H. P. Bennetto, G. M. Delaney, J. R. Mason, J. L. Stirling, and C. F. Thurston. 1984. Electron-transfer coupling in microbial fuel cells: 1. Comparison of redoxmediator reduction rates and respiratory rates of bacteria. J. Chem. Tech. Biotechnol. 34B: 3-12
-
Shin, H. S., M. K. Jain, and J. G. Zeikus. 2001. Evaluation of the electrochemical bioreactor system in biotransformation of
$\beta$ -tetralone to$\beta$ -tetralol. Appl. Microbiol. Biotechnol. 57: 506-510 https://doi.org/10.1007/s002530100809 - Stoodley, P., D. deBeer, and H. M. Pappin-Scott. 1997. Influcnce of electric fields and pH on biofilm structure as related to the bioelectric effect. Antimicrob. Agents Chemother. 41: 1876-1879
- Thurston, C. F., H. P. Bennetto, G. M. Delaney, J. R. Mason, S. D. Roller, and J. L. Stirling. 1985. Glucose metabolism in a microbial fuel cell. Stoichiometry of product formation in a thionine-mediated Proteus vulgaris fuel cell and its relation to coulombic yields. J. Gen. Microbiol. 131: 1391-1401
- Tinoco, I. Jr., K. Sauer, and J. C. Wang. 1985. Physical Chemistry: Principles and Applications in Biological Sciences. 2nd Edition. pp. 111-168. Prentice Hall. New York
- Verho, R., J. Londesborough, M. Penttilä, and P. Richard. 2003. Engineering redox cofactor regeneration for improved pentose fermentation in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 69: 5892-5897 https://doi.org/10.1128/AEM.69.10.5892-5897.2003
- Waligora, A.-J., M.-C. Barc, P. Bourlioux, A. Collignon, and T. Karjalainen. 1999. Clostridium difficile cell attachment is modified by environmental factors. Appl. Envir. Microbiol. 65: 4234-4238
- Wouters, P. C., N. Dutreux, J. P. P. M. Smelt, and H. L. M. Lelieveld. 1999. Effects of pulsed electric fields on inactivation kinetics of Listeria innocua. Appl. Environ. Microbiol. 65: 5346-5371