• Title/Summary/Keyword: electric pulse

Search Result 639, Processing Time 0.029 seconds

Fault Detector and Length Measurement of Electric Cables Based on Frequency Waves

  • Chawporn, Talerngkiat;Chaikla, Amphawan;Sriratana, Witsarut;Trisuwannawat, Thanit
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.45-48
    • /
    • 2003
  • This research presents an approach to simultaneously detect the faults and measure the length of the electric cables. This approach is easy to use and inexpensive. Moreover, it can be applied to any kinds and sizes of the electric cable. This paper uses 750V $4{\times}4$ Sq.mm. cables. The concept is to send the 2 kHz pulse into the electric cable. When the pulse bumps into the fault, it bounces back. Then, the total time the pulse travels back and forth and the shape of the pulse after bumping are inspected using the pulse detector and pulse converter. Next, the signal obtained is modulated with 10 MHz carrier pulse to segregate into several small pulses before sending to 8-bit counter. The length of the electric cable can be obtained using microcontroller and the location of the faults can be seen on the LCD screen. This approach can be used to inspect the electric cables with the length of at least 15 m.

  • PDF

Generation of Ultrawide Band Electromagnetic Pulse from Blumlein Pulse Forming Line

  • Jin, Yun Sik;Kim, Jong Soo;Cho, Chuhyun;Roh, Young Su
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.677-681
    • /
    • 2014
  • A high voltage pulse generator was fabricated to radiate ultrawide band electromagnetic pulse. A coaxial type of Blumlein pulse forming line is employed to produce a pulse of high voltage (>300 kV) and short pulse duration (~5 ns). A helical strip/wire type of air-cored pulse transformer was used to charge the Blumlein pulse forming line up to more than 300 kV. A peaking switch is essential to make the pulse rise time as fast as possible. Typically, the rise time is ~500 ps. The output pulse of the generator is radiated into air through an exponentially tapered TEM horn antenna. The electric field intensity of a radiated pulse was measured as a function of the distance from the transmitting horn as well as the output voltage of the peaking switch. The peak-to-peak value of the electric field intensity at 10 m from the TEM antenna was~100 kV/m.

Study on Reillumination of Hi-soo type Electronic Manometer (희수식 전자 맥진기의 재조명)

  • Kim, Eun-Hye;Kim, Byung-Soo;Kang, Jung-Soo
    • Journal of Haehwa Medicine
    • /
    • v.18 no.2
    • /
    • pp.37-45
    • /
    • 2009
  • In early 1970s, Electronic Manometers were researched and developed for modernization and objectification of pulse diagnosis. Method of finger pressing, also known as cuffs pressing, is essential for sensing a pulse wave. I think comprehension and deduction of problem from the existing Hi-soo type electronic manometer, will be important for making a better one. The Hi-soo type electronic manometer is constructed of cuff pressing type sensor, differential amplifier, transmitter and recorder. Pulse movement and pulse wave, gauging blood flow, is analyzed by pulse image of "Yixuerumen(醫學入門)". At standard of pulse wave, huanmai(緩脈) is distinguish from chishu(slow and fast, 遲數), fushen(float and sink, 浮沈), interference wave, modificated wave, and phase angel. The Hi-soo type electronic manometer had no explanation of formational mechanism, significantly different with pulse wave which is early known and reported. The strength of Hi-soo type electric manometer is use of cuff pressing type sensor. Above all, the importance of electric manometer is reading the pulse movement accurately then expressing it as pulse wave. From now on the improvement of precise sensor should make a progress.

  • PDF

A New Gate Pulse Generating Method of 12-Pulse Phase Controlled Rectifier for HVDC (HVDC용 12-펄스 위상제어정류기의 새로운 게이트 펄스 발생 기법)

  • Ahn, Jong-Bo;Kim, Kook-Hun;Lee, Jong-Moo;Lee, Ki-Do
    • Proceedings of the KIEE Conference
    • /
    • 2000.11a
    • /
    • pp.139-141
    • /
    • 2000
  • High voltage direct current(HVDC) transmission system uses the phase controlled rectifier triggered by means of IPC(individual phase control) or EPC(equidistant pulse control). Most HVDC system has adopted EPC method that can solve the harmonic instability problem of IPC method in weak power system. But EPC has inherent indirect synchronizing problem requiring the closed loop control. This paper presents the new gate pulse generating method for 12-pulse HVDC converter, which combines IPC with EPC. Simulation and test results are presented. The basic concept is that it generates the gating pulse for 12-pulse converter by synthesizing the internal phase reference using the frequency and phase information of a sin91e phase voltage. To ensure the reliability of the external phase input, Potential transformer that detects the phase voltage has redundancy. Using fault detecting algorithm the healthy input is always guaranteed. And the frequency compensation function was reinforced.

  • PDF

A Study on the Development of High Efficieny $CO_2$ Laser : Output Characteristics of Pulsed $CO_2$ Laser Using SMPS Method (고효율 $CO_2$ Laser 개발 연구 : SMPS 방식 펄스형 $CO_2$ Laser의 출력특성)

  • Chung, Hyun-Ju;Lee, Dong-Hoon;Nam, Gyung-Hoon;Kim, Do-Wan;Chung, Young-Hwan;Lee, Yu-Soo;Kim, Hee-Je;Cho, Jung-Soo
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.11
    • /
    • pp.730-734
    • /
    • 1999
  • In this study, it is the purpose to develope a cheap and compact repetitively pulsed $CO_2$ laser with pulse repetition rate range of 180 Hz. We used a SCR switched power supply as a high voltage pulsed supply, which is cheap and simple comparing to others. PIC one-chip microprocessor was used for precise control of a laser power supply on the control part. And the laser cavity was fabricated as an axial and water cooled type. The laser performance characteristics as various parameters, such as pulse repetition rate and gas pressure have been investigated. The experiment was done under the condition of total pressure of $CO_2, N_2$ and He from 4 Torr to 16 Torr and pulse repetition rate from 4 Hz to 180 Hz. As a result, the maximum average output was about 19.6W at the total pressure of 12 Torr and the pulse repetition rate of 180Hz.

  • PDF

Comparative Study of Flux Regulation Methods for Hybrid Permanent Magnet Axial Field Flux-switching Memory Machines

  • Yang, Gongde;Fu, Xinghe;Lin, Mingyao;Li, Nian;Li, Hao
    • Journal of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.158-167
    • /
    • 2019
  • This research comparatively studies three kinds of flux regulation methods, namely, stored capacitor discharge pulse (SCDP), constant current source pulse (CCSP), and quantitative flux regulation pulse (QFRP), which are used for hybrid permanent magnet (PM) axial field flux-switching memory machines (HPM-AFFSMMs). Through an analysis of the operation principle and the series hybrid PM flux regulation mechanism of the objective machine, the circuit topologies and flux regulation process of these flux regulation methods are addressed in detail. On the basis of a simulation, the flux regulation characteristics of the researched machine during the magnetization and demagnetization processes are comparatively evaluated. Then, machine performance, including back EMF, direct and quadrature axis inductances, and magnetization and demagnetization characteristics, is quantitatively investigated. Results show that the QFRP enables the HPM-AFFSMM to achieve a less harmonic component of back EMF by approximately 7.28% and 7.97% at the magnetization and demagnetization states, respectively, and a more complete magnetization process than the SCDP and CCSP.

Principles and Comparative Studies of Various Power Measurement Methods for Lithium Secondary Batteries (리튬이차전지 출력측정법의 원리 및 측정법간 비교 연구)

  • Lee, Hye-Won;Lee, Yong-Min
    • Journal of the Korean Electrochemical Society
    • /
    • v.15 no.3
    • /
    • pp.115-123
    • /
    • 2012
  • As the market of lithium secondary batteries moves from mobile IT devices to large-format electric vehicles or energy storage systems, the strengthened battery specifications such as long-term reliability longer than 10 years, pack-level safety and tough competitive price have been required. Moreover, even though high power properties should also be achieved for hybrid electric vehicles, it is not easy to measure accurate power values at various conditions. Because it is difficult to choose a proper measurement method and its experimental condition is more complex comparing to capacity measurement. In addition, the power values are very sensitive to power duration time, state-of-charge (SOC) of cells, cut-off voltages, and temperatures, whereas capacity values are not. In this paper, we introduce three kinds of power measurement methods, hybrid pulse power characterization (HPPC) suggested by US FreedomCar, so-called J-pulse by Japan electric vehicle association standards (JEVS) and constant power measurement, respectively. Moreover, with pouch-type unit cells for HEV, experimental power data are discussed in order to compare each power measurement.

Electro-Osmotic Dewatering under Electro-Osmotic Pulse Technology

  • Kim, Jitae;Lee, Jeongwoo;Chung, Il-Moon
    • The Journal of Engineering Geology
    • /
    • v.30 no.4
    • /
    • pp.423-433
    • /
    • 2020
  • Direct current (DC) electric fields have been used for electro-osmotic dewatering. Under DC conditions, however, the electrical contact resistance between the electrode and the dewatering material increases considerably during the process of dewatering. Such a circumstance hinders the continuation of effective electro-osmotic dewatering. To reduce this hindrance, an applied pulse electric field with periodic reversals of the electrode polarity should improve electro-osmotic dewatering. In this study, electro-osmotic dewatering under pulse conditions was experimentally investigated for electrode polarity reversals. During the dewatering process, the pulse electric field was able to reduce the hindrance caused by the DC, resulting in an increased final dewatered amount relative to that under a DC electric field. For a constant applied voltage, the reversed polarity condition, under which the electric current passing through the material was almost unchanged with time, yielded the maximum final dewatered amount. This technique can be used to enhance drainage from a water storage facility during a period of extreme drought and the seawater desalination plants using reverse osmosis in drought stricken coastal regions.

Modeling Jamming Avoidance Response of Pulse-type Weakly Electric Fish (전기물고기의 방해 회피 반응 모델링과 응용)

  • Soh, JaeHyun;Kim, DaeEun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.10
    • /
    • pp.924-929
    • /
    • 2015
  • In this paper, we suggest a phase difference algorithm inspired by weakly electric fish. Weakly electric fish is a fish which generates electric field though its electric organ in the tail. The weakly electric fish search for prey and detect an object by using electrolocation. The weakly electric fish have Jamming Avoidance Response (JAR) to avoid jamming signal. One of pulse-type weakly electric fish Gymnotus carapo also have JAR to reduce the probability of coincidence of pulses. We analyze this response signal and design the phase difference algorithm. We expect that simple algorithm inspired by weakly electric fish can be used in many engineering fields.