Biological Control of Strawberry Gray Mold Caused by Botrytis cinerea Using Bacillus licheniformis N1 Formulation

  • Kim, Hyun-Ju (Division of Applied Biology, College of Natural Resources and Life Science, Dong-A University) ;
  • Lee, Soo-Hee (Division of Applied Biology, College of Natural Resources and Life Science, Dong-A University) ;
  • Kim, Choul-Sung (Division of Applied Biology, College of Natural Resources and Life Science, Dong-A University) ;
  • Lim, Eun-Kyung (Division of Applied Biology, College of Natural Resources and Life Science, Dong-A University) ;
  • Choi, Ki-Hyuck (Division of Applied Biology, College of Natural Resources and Life Science, Dong-A University) ;
  • Kong, Hyun-Gi (Division of Applied Biology, College of Natural Resources and Life Science, Dong-A University) ;
  • Kim, Dae-Wook (Division of Applied Biology, College of Natural Resources and Life Science, Dong-A University) ;
  • Lee, Seon-Woo (Division of Applied Biology, College of Natural Resources and Life Science, Dong-A University) ;
  • Moon, Byung-Ju (Division of Applied Biology, College of Natural Resources and Life Science, Dong-A University)
  • Published : 2007.03.31

Abstract

Bacillus licheniformis N1 is a biological control agent to control gray mold diseases caused by Botrytis cinerea. Various formulations of B. licheniformis N1 were generated and evaluated for the activity to control strawberry gray mold. The wettable powder type formulation N1E was selected in pot experiments with remarkable disease control activity on both strawberry leaves and flowers. The N1E formulation contained 400 g of com starch, 50 ml of olive oil, and 50 g of sucrose per a liter of bacterial fermentation culture. Optimum dilution of N1E to appropriately control the strawberry gray mold appeared to be 100-fold dilution in plastic house artificial infection experiments. The significant reduction of symptom development in the senescent leaves was apparent by the treatment of N1E at 100-fold dilution when N1E was applied before Bo. cinerea inoculation, but not after the inoculation. Both artificial infection experiments in a plastic house and natural infection experiments in the farm plastic house under production conditions revealed that the disease severity of gray mold on strawberry leaves and flowers was significantly reduced by N1E treatment. The disease control value of N1E on strawberry leaves was 81% under production conditions, as compared with the 61.5% conferred by a chemical fungicide, iprodione. This study suggests that our previously generated formulation of B. licheniformis N1 will be effective to control strawberry gray mold by its preventive activity.

Keywords

References

  1. Boff, B., J. Kohl, M. Jansen, P. J. F. M. Horsten, C. Lombaers-van der Plas, and M. Gerlagh. 2002. Biological control of gray mold with Ulocladium atrum in annual strawberry crops. Plant Dis. 86: 220-224 https://doi.org/10.1094/PDIS.2002.86.3.220
  2. Brannen, P. M. and D. S. Kenney. 1997. Kodiak$^{\circledR}$ - a successful biological-control product for suppression of soilborne plant pathogens of cotton. J. Ind. Microbiol. Biot. 19: 169-171 https://doi.org/10.1038/sj.jim.2900439
  3. Braun, P. G. and J. C. Sutton. 1987. Inoculum sources of Botrytis cinerea in fruit rot of strawberries in Ontario. Can. J. Plant Pathol. 9: 1-5 https://doi.org/10.1080/07060668709501903
  4. Braun, P. G. and J. C. Sutton. 1988. Infection cycles and population dynamics of Botrytis cinerea in strawberry leaves. Can. J. Plant Pathol. 10: 133-141 https://doi.org/10.1080/07060668809501745
  5. Bulger, M. A., M. A. Ellis, and L. V. Madden. 1987. Influence of temperature and wetness duration on infection of strawberry flowers by Botrytis cinerea and disease incidence of fruit originating from infected flowers. Phytopathology 77: 1225-1230 https://doi.org/10.1094/Phyto-77-1225
  6. Elad, Y., H. Yunis, and J. Katan. 1992. Multiple resistance to benzimidazoles, dicarboximides and diethofencarb in field isolates of Botrytis cinerea in Israel. Plant Pathol. 41: 41- 46 https://doi.org/10.1111/j.1365-3059.1992.tb02314.x
  7. Emmert, E. A. B. and J. Handelsman. 1999. Biocontrol of plant disease: A (Gram-) positive perspective. FEMS Microbiol. Lett. 171: 1-9 https://doi.org/10.1111/j.1574-6968.1999.tb13405.x
  8. Fravel, D. R., W. J. Connick Jr., and J. A. Lewis. 1998. Formulation of microorganisms to control plant diseases, pp. 187-202. In Burges, H. D. (ed.), Formulation of Microbial Pesticides: Beneficial Microorganisms, Nematodes and Seed Treatments. Kluwer Academic Publishers, Dordrecht
  9. Hang, N. T. T., S. O. Oh, K. H. Kim, J. S. Hur, and Y. J. Koh. 2005. Bacillus subtilis S1-0210 as a biocontrol agent against Botrytis cinerea in strawberries. Plant Pathol. J. 21: 59-63 https://doi.org/10.5423/PPJ.2005.21.1.059
  10. Jeon, Y. H., S. P. Chang, I. Hwang, and Y. H. Kim. 2003. Involvement of growth-promoting rhizobacterium Paenibacillus polymyxa in root rot of stored Korean ginseng. J. Microbiol. Biotechnol. 13: 881-891
  11. Katan, T., Y. Elad, and H. Yunis. 1989. Resistance to diethofencarb (NPC) in benomyl-resistant field isolates of Botrytis cinerea. Plant Pathol. 38: 86-92 https://doi.org/10.1111/j.1365-3059.1989.tb01431.x
  12. Lee, J. P., S-W. Lee, C. S. Kim, J. H. Son, J. H. Song, K. Y. Lee, H. J. Kim, S. J. Jung, and B. J. Moon. 2006. Evalution of formulations of Baicllus licheniformis for the biological control of tomato gray mold caused by Botrytis cinerea. Biol. Control 37: 329-337 https://doi.org/10.1016/j.biocontrol.2006.01.001
  13. Legard, D. E., C. L. Xiao, J. C. Mertely, and C. K. Chandler. 2000. Effects of plant spacing and cultivar on incidence of Botrytis fruit rot in annual strawberries. Plant Dis. 84: 531- 538 https://doi.org/10.1094/PDIS.2000.84.5.531
  14. Lima, G., A. Ippolito, F. Nigro, and M. Salerno. 1997. Effectiveness of Aureobasidium pullulans and Candida oleophila against postharvest strawberry rots. Postharvest Biol. Technol. 10: 169-178 https://doi.org/10.1016/S0925-5214(96)01302-6
  15. Maas, J. L. 1984. Compendium of Strawberry Diseases. American Phytopathological Society, St. Paul, MN
  16. Mertely, J. C., C. K. Chandler, C. L. Xiao, and D. E. Legard. 2000. Comparison of sanitation and fungicides for management of Botrytis fruit rot of strawberry. Plant Dis. 84: 1197-1202 https://doi.org/10.1094/PDIS.2000.84.11.1197
  17. Nautiyal, C. S., S. Mehta, and H. B. Singh. 2006. Biological control and plant-growth promotion by Bacillus strains from milk. J. Microbiol. Biotechnol. 16: 184-192
  18. Ohno, A., T. Ano, and M. Shoda. 1996. Use of soybean curd residue, Okara, for the solid state substrate in the production of a lipopeptide antibiotic, iturin A, by Bacillus subtilis NB22. Process Biochem. 31: 801-806 https://doi.org/10.1016/S0032-9592(96)00034-9
  19. Ohno, A., T. Ano, and M. Shoda. 1995. Production of a lipopeptide antibiotic, surfactin, by recombinant Bacillus subtilis in solid state fermentation. Biotechnol. Bioeng. 47: 209-214 https://doi.org/10.1002/bit.260470212
  20. Peng, G. and J. C. Sutton. 1991. Evaluation of microorganisms for biocontrol of Botrytis cinerea in strawberry. Can. J. Plant Pathol. 13: 247-257 https://doi.org/10.1080/07060669109500938
  21. Schisler, D. A., P. J. Slininger, R. W. Behle, and M. A. Jackson. 2004. Formulation of Bacillus spp. for biological control of plant diseases. Phytopathology 94: 1267-1271 https://doi.org/10.1094/PHYTO.2004.94.11.1267
  22. Son, J. H., J. P. Lee, C. S. Kim, E. K. Lim, J. H. Song, H. J. Kim, H. C. Park, and B. J. Moon. 2001. Effects of tomatojuice and potassium phosphate on the infection of Botrytis cinerea LVF12 on the tomato leaves. Res. Plant Dis. 7: 134- 139
  23. Son, Y. J., J. P. Lee, C. S. Kim, J. H. Song, H. J. Kim, J. W. Kim, D. H. Kim, H. C. Park, and B. J. Moon. 2002. Biological control of gray mold rot of perilla caused by Botrytis cinerea: I. Resistance of perilla cultivars and selection of antagonistic bacteria. Plant Pathol. J. 18: 36- 42 https://doi.org/10.5423/PPJ.2002.18.1.036
  24. Sutton, J. C. and G. Peng. 1993. Biocontrol of Botrytis cinerea in strawberry leaves. Phytopathology 81: 615-629
  25. Yourman, L. F. and S. N. Jeffers. 1999. Resistance to benzimidazole and dicarboximide fungicides in greenhouse isolates of Botrytis cinerea. Plant Dis. 83: 569-575 https://doi.org/10.1094/PDIS.1999.83.6.569