Influence of $CO_2$ on Growth and Hydrocarbon Production in Botryococcus braunii

  • Ranga Rao, A. (Plant Cell Biotechnology Department, Central Food Technological Research Institute) ;
  • Sarada R. (Plant Cell Biotechnology Department, Central Food Technological Research Institute) ;
  • Ravishankar G.A. (Plant Cell Biotechnology Department, Central Food Technological Research Institute)
  • Published : 2007.03.31

Abstract

Botryococcus braunii is a green colonial fresh water microalga and it is recognized as one of the renewable resources for production of liquid hydrocarbons. CFTRI-Bb-l and CFTRI-Bb-2 have been reported for the first time and their performance with regard to growth and biochemical profile is presented here. The present study focused on effect of carbon dioxide $(CO_2)$ on biomass, hydrocarbon, carbohydrate production, fatty acid profile, and carotenoid content in various species of B. braunii (LB-572, SAG 30.81, MCRC-Bb, N-836, CFTRI-Bb-l, and CFTRI-Bb-2) at 0.5, 1.0, and 2.0% (v/v) levels using a two-tier flask. $CO_2$ at 2.0% (v/v) level enhanced growth of the organism, and a two-fold increase in biomass and carotenoid contents was observed in all the B. braunii strains studied compared with control culture (without $CO_2$ supplementation). At 1 % and 2% (v/v) $CO_2$ concentrations, palmitic acid and oleic acid levels increased by 2.5 to 3 folds in one of the strains of B. braunii (LB-572). Hydrocarbon content was found to be above 20% at 2% $CO_2$ level in the B. braunii LB-572, CFTRI-Bb-2, CFTRI-Bb-l, and N-836 strains, whereas it was less than 20% in the SAG 30.81 and MCRC-Bb strains compared with control culture. This culture methodology will provide information on $CO_2$ requirement for growth of algae and metabolite production. B. braunii spp. can be grown at the tested levels of $CO_2$ concentration without much influence on culture pH.

Keywords

References

  1. Achitouv, E., P. Metzger, M. N. Rager, and C. Largeau. 2004. $C_{31}$-$C_{34}$ methylated squalenes from a Bolivian strain of Botryococcus braunii. Phytochemistry 65: 3159-3165 https://doi.org/10.1016/j.phytochem.2004.09.015
  2. Cane, R. F. 1977. Coorongite, balkashite and related substances - an annotated bibliography. Trans. R. Soc. S. Aust. 101: 153-164
  3. Christie, W. W. 1982. Lipid Analysis, pp. 93-96. 2nd Ed. Pergamon Press, New York
  4. Davies, B. H. 1976. Carotenoids, pp. 38-166. In T. W. Goodwin (ed.), Chemistry and Biochemistry of Plant Pigments, Academic Press, London
  5. Dayananda, C., R. Sarada, S. Bhattacharya, and G. A. Ravishankar. 2005. Effect of media and culture conditions on growth and hydrocarbon production by Botryococcus braunii. Process Biochem. 40: 3125-3131 https://doi.org/10.1016/j.procbio.2005.03.006
  6. Dubois, M. K., A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28: 350-356 https://doi.org/10.1021/ac60111a017
  7. Fang, J. Y., H. C. Chiu, J. T. Wu, Y. R. Chiang, and S. H. Hsu. 2004. Fatty acids in Botryococcus braunii accelerate tropical delivery of flurbiprofen into and across skin. Int. J. Pharm. 276: 163-173 https://doi.org/10.1016/j.ijpharm.2004.02.026
  8. Fiske, C. H. and Y. Subba Rao. 1925. The colorimetric determination of inorganic phosphorus. J. Biol. Chem. 66: 375-400
  9. Grice, K., S. Schouten, A. Nissenbaum, J. Charrach, and J. S. Sinninghe Damste. 1998. A remarkable paradox: Sulfurised fresh water algal (Botryococcus braunii) lipids in an ancient hyper saline auxinic ecosystem. Org. Geochem. 28: 195-216 https://doi.org/10.1016/S0146-6380(97)00127-7
  10. Gudin, C. and D. Thomas. 1981. Production de polysaccharides sulfates par un biophotoreacteur a cellules immobilisees de Porphyridium cruentum. C. R. Sci. Paris 293: 35-37
  11. Hillen, L. W., G. Pollard, L. V. Wake, and N. White. 1982. Hydrocracking of the oils of Botryococcus braunii to transport fuels. Biotechnol. Bioeng. 24: 193-205 https://doi.org/10.1002/bit.260240116
  12. Iwamoto, H. 1986. Production of hydrocarbons by microalgae (in Japanese). Bio Sci. Ind. 44: 1160-1167
  13. Largeau, C., E. Caradevall, C. Berkaloff, and P. Dhamliencourt. 1980. Sites of accumulation and composition of hydrocarbons in Botryococcus braunii. Phytochemistry 19: 1043-1051 https://doi.org/10.1016/0031-9422(80)83054-8
  14. Lichtenthaler, H. K. 1987. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes, pp. 350-382. In L. Packer, and Douce, R. (eds.), Methods in Enzymology, Academic Press, London
  15. Metzger, P., B. Allard, E. Casadevall, C. Berkaloff, and A. Coute. 1990. Structure and chemistry of a new chemical race of Botryococcus braunii that produces lycopadiene, a tetraterpenoid hydrocarbon. J. Phycol. 26: 258-266 https://doi.org/10.1111/j.0022-3646.1990.00258.x
  16. Metzger, P., C. Berkaloff, E. Casadevall, and A. Coute. 1985. Alkadiene and botryococcene producing races of wild strains of Botryococcus braunii. Phytochemistry 24: 2305- 2312 https://doi.org/10.1016/S0031-9422(00)83032-0
  17. Metzger, P. and C. Largeau. 2005. Botryococcus braunii: A rich source for hydrocarbons and related ether lipids. Appl. Microbiol. Biotechnol. 66: 486-496 https://doi.org/10.1007/s00253-004-1779-z
  18. Sato, Y., Y. Ito, S. Okada, M. Murakami, and H. Abe. 2003. Biosynthesis of the triterpenoids, botryococcenes and tetramethylsqualene in the B race of Botryococcus braunii via the non-mevalonate pathway. Tetrahedr. Lett. 44: 7035- 7037 https://doi.org/10.1016/S0040-4039(03)01784-2
  19. Usha, Tripathi, R. Sarada, and G. A. Ravishankar. 2001. A culture method for micro algal forms using two tier vessel providing carbon-dioxide environment: Studies on growth and carotenoid production. World J. Microb. Biotechnol. 17: 325-329 https://doi.org/10.1023/A:1016682120171
  20. Wolf, F. R., A. M. Nanomura, and J. A. Bassham. 1985. Growth and branched hydrocarbon production in strain of Botryococcus braunii. J. Phycol. 21: 388-396 https://doi.org/10.1111/j.0022-3646.1985.00388.x