Browse > Article

Influence of $CO_2$ on Growth and Hydrocarbon Production in Botryococcus braunii  

Ranga Rao, A. (Plant Cell Biotechnology Department, Central Food Technological Research Institute)
Sarada R. (Plant Cell Biotechnology Department, Central Food Technological Research Institute)
Ravishankar G.A. (Plant Cell Biotechnology Department, Central Food Technological Research Institute)
Publication Information
Journal of Microbiology and Biotechnology / v.17, no.3, 2007 , pp. 414-419 More about this Journal
Abstract
Botryococcus braunii is a green colonial fresh water microalga and it is recognized as one of the renewable resources for production of liquid hydrocarbons. CFTRI-Bb-l and CFTRI-Bb-2 have been reported for the first time and their performance with regard to growth and biochemical profile is presented here. The present study focused on effect of carbon dioxide $(CO_2)$ on biomass, hydrocarbon, carbohydrate production, fatty acid profile, and carotenoid content in various species of B. braunii (LB-572, SAG 30.81, MCRC-Bb, N-836, CFTRI-Bb-l, and CFTRI-Bb-2) at 0.5, 1.0, and 2.0% (v/v) levels using a two-tier flask. $CO_2$ at 2.0% (v/v) level enhanced growth of the organism, and a two-fold increase in biomass and carotenoid contents was observed in all the B. braunii strains studied compared with control culture (without $CO_2$ supplementation). At 1 % and 2% (v/v) $CO_2$ concentrations, palmitic acid and oleic acid levels increased by 2.5 to 3 folds in one of the strains of B. braunii (LB-572). Hydrocarbon content was found to be above 20% at 2% $CO_2$ level in the B. braunii LB-572, CFTRI-Bb-2, CFTRI-Bb-l, and N-836 strains, whereas it was less than 20% in the SAG 30.81 and MCRC-Bb strains compared with control culture. This culture methodology will provide information on $CO_2$ requirement for growth of algae and metabolite production. B. braunii spp. can be grown at the tested levels of $CO_2$ concentration without much influence on culture pH.
Keywords
Botryococcus braunii; microalga; hydrocarbon; biomass; carotenoids; carbon dioxide; fatty acids;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Davies, B. H. 1976. Carotenoids, pp. 38-166. In T. W. Goodwin (ed.), Chemistry and Biochemistry of Plant Pigments, Academic Press, London
2 Sato, Y., Y. Ito, S. Okada, M. Murakami, and H. Abe. 2003. Biosynthesis of the triterpenoids, botryococcenes and tetramethylsqualene in the B race of Botryococcus braunii via the non-mevalonate pathway. Tetrahedr. Lett. 44: 7035- 7037   DOI   ScienceOn
3 Wolf, F. R., A. M. Nanomura, and J. A. Bassham. 1985. Growth and branched hydrocarbon production in strain of Botryococcus braunii. J. Phycol. 21: 388-396   DOI
4 Gudin, C. and D. Thomas. 1981. Production de polysaccharides sulfates par un biophotoreacteur a cellules immobilisees de Porphyridium cruentum. C. R. Sci. Paris 293: 35-37
5 Grice, K., S. Schouten, A. Nissenbaum, J. Charrach, and J. S. Sinninghe Damste. 1998. A remarkable paradox: Sulfurised fresh water algal (Botryococcus braunii) lipids in an ancient hyper saline auxinic ecosystem. Org. Geochem. 28: 195-216   DOI
6 Dubois, M. K., A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28: 350-356   DOI
7 Hillen, L. W., G. Pollard, L. V. Wake, and N. White. 1982. Hydrocracking of the oils of Botryococcus braunii to transport fuels. Biotechnol. Bioeng. 24: 193-205   DOI
8 Metzger, P., C. Berkaloff, E. Casadevall, and A. Coute. 1985. Alkadiene and botryococcene producing races of wild strains of Botryococcus braunii. Phytochemistry 24: 2305- 2312   DOI   ScienceOn
9 Fiske, C. H. and Y. Subba Rao. 1925. The colorimetric determination of inorganic phosphorus. J. Biol. Chem. 66: 375-400
10 Metzger, P. and C. Largeau. 2005. Botryococcus braunii: A rich source for hydrocarbons and related ether lipids. Appl. Microbiol. Biotechnol. 66: 486-496   DOI   ScienceOn
11 Metzger, P., B. Allard, E. Casadevall, C. Berkaloff, and A. Coute. 1990. Structure and chemistry of a new chemical race of Botryococcus braunii that produces lycopadiene, a tetraterpenoid hydrocarbon. J. Phycol. 26: 258-266   DOI
12 Usha, Tripathi, R. Sarada, and G. A. Ravishankar. 2001. A culture method for micro algal forms using two tier vessel providing carbon-dioxide environment: Studies on growth and carotenoid production. World J. Microb. Biotechnol. 17: 325-329   DOI   ScienceOn
13 Iwamoto, H. 1986. Production of hydrocarbons by microalgae (in Japanese). Bio Sci. Ind. 44: 1160-1167
14 Dayananda, C., R. Sarada, S. Bhattacharya, and G. A. Ravishankar. 2005. Effect of media and culture conditions on growth and hydrocarbon production by Botryococcus braunii. Process Biochem. 40: 3125-3131   DOI   ScienceOn
15 Lichtenthaler, H. K. 1987. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes, pp. 350-382. In L. Packer, and Douce, R. (eds.), Methods in Enzymology, Academic Press, London
16 Achitouv, E., P. Metzger, M. N. Rager, and C. Largeau. 2004. $C_{31}$-$C_{34}$ methylated squalenes from a Bolivian strain of Botryococcus braunii. Phytochemistry 65: 3159-3165   DOI   ScienceOn
17 Fang, J. Y., H. C. Chiu, J. T. Wu, Y. R. Chiang, and S. H. Hsu. 2004. Fatty acids in Botryococcus braunii accelerate tropical delivery of flurbiprofen into and across skin. Int. J. Pharm. 276: 163-173   DOI
18 Largeau, C., E. Caradevall, C. Berkaloff, and P. Dhamliencourt. 1980. Sites of accumulation and composition of hydrocarbons in Botryococcus braunii. Phytochemistry 19: 1043-1051   DOI   ScienceOn
19 Cane, R. F. 1977. Coorongite, balkashite and related substances - an annotated bibliography. Trans. R. Soc. S. Aust. 101: 153-164
20 Christie, W. W. 1982. Lipid Analysis, pp. 93-96. 2nd Ed. Pergamon Press, New York