DOI QR코드

DOI QR Code

Modification and Repair of a Carbon Nanotube-based Device Using an Atomic Force Microscope

원자힘현미경을 이용한 탄소나노튜브소자의 턴형 및 수리

  • Park, Ji-Yong (Division of Energy Systems Research, Ajou University) ;
  • Kim, Yong-Sun (Division of Energy Systems Research, Ajou University) ;
  • Oh, Young-Mu (Division of Energy Systems Research, Ajou University)
  • 박지용 (아주대학교 에너지시스템학부) ;
  • 김용선 (아주대학교 에너지시스템학부) ;
  • 오영무 (아주대학교 에너지시스템학부)
  • Published : 2007.01.31

Abstract

Electrical and mechanical modifications of devices based on carbon nanotubes(CNTs) using an atomic force microscope(AFM) in the forms of cutting and reconnection of CNTs are demonstrated. In addition to the modifications, electrostatic force microscopy is used to visualize the cutting and reconnection of CNTs. In this way, AFM is shown to be a useful tool in local modifications and manipulations of CNT-based devices.

원자힘현미경(AFM)을 이용하여 탄소나노튜브소자에서 탄소나노튜브를 전기적 또는 기계적으로 조작함으로써 전기적 특성을 변형시키는 연구를 수행하였으며 이를 이용하여 탄소나노튜브의 절단 및 연결을 시연하였다. 조작과 동시에 AFM을 이용한 정전기힘측정법을 적용하여 탄소나노튜브의 절단 및 연결을 시각화할 수도 있음을 밝히고 이를 결합하여 본 연구에서는 AFM을 이용한 탄소나노튜브소자의 극소적인 변형 및 조작이 가능하다는 것을 보였다.

Keywords

References

  1. S. Iijima, Nature 354, 56 (1991) https://doi.org/10.1038/354056a0
  2. M. P. Anantram, and F. Leonard, Rep. Prog. Phys. 69, 507 (2006) https://doi.org/10.1088/0034-4885/69/3/R01
  3. P. Avouris, MRS Bull. 29, 403 (2004) https://doi.org/10.1557/mrs2004.123
  4. H. J. Dai, Surf. Sci. 500, 218 (2002) https://doi.org/10.1016/S0039-6028(01)01558-8
  5. P. L. McEuen, M. S. Fuhrer, and H. K. Park, IEEE Trans. Nanotech. 1, 78 (2002) https://doi.org/10.1109/TNANO.2002.1005429
  6. R. Martel et al., Appl. Phys. Lett. 73, 2447 (1998) https://doi.org/10.1063/1.122477
  7. S. J. Tans, A. R. M. Verschueren, and C. Dekker, Nature 393, 49 (1998) https://doi.org/10.1038/29954
  8. J. Kong et al., Science 287, 622 (2000) https://doi.org/10.1126/science.287.5453.622
  9. Y. Cui et al., Science 293, 1289 (2001) https://doi.org/10.1126/science.1062711
  10. K. Alam, and R. Lake, Appl. Phys. Lett. 87, 073104 (2005) https://doi.org/10.1063/1.2011788
  11. A. Javey et al., Nature Mater. 1, 241 (2002) https://doi.org/10.1038/nmat769
  12. L. Yu-Ming et al., IEEE Electron Device Lett. 26, 823 (2005) https://doi.org/10.1109/LED.2005.857704
  13. A. Bachtold et al., Phys. Rev. Lett. 84, 6082 (2000) https://doi.org/10.1103/PhysRevLett.84.6082
  14. S. J. Tans, and C. Dekker, Nature 404, 834 (2000) https://doi.org/10.1038/35009026
  15. Y. Yaish et al., Phys. Rev. Lett. 92, 046401 (2004) https://doi.org/10.1103/PhysRevLett.92.046401
  16. J.-Y. Park et al., Appl. Phys. Lett. 80, 4446 (2002) https://doi.org/10.1063/1.1485126
  17. D. Bozovic et al., Appl. Phys. Lett. 78, 3693 (2001) https://doi.org/10.1063/1.1377316
  18. D. Bozovic et al., Phys. Rev. B 67, 033407 (2003) https://doi.org/10.1103/PhysRevB.67.033407
  19. P. Avouris et al., Appl. Surf. Sci. 141, 201 (1999) https://doi.org/10.1016/S0169-4332(98)00506-6
  20. J. Kong et al., Nature 395, 878 (1998) https://doi.org/10.1038/27632
  21. H. C. Day, and D. R. Allee, Appl. Phys. Lett. 62, 2691 (1993) https://doi.org/10.1063/1.109259
  22. M. S. Fuhrer et al., Science 288, 494 (2000) https://doi.org/10.1126/science.288.5465.494