Flame Retardancy of UV-Cured Epoxy Acrylate Resin Containing Combined Flame Retardants

혼합 난연제를 함유하는 UV 경화형 Epoxy Acrylate Resin의 난연 특성

  • Kim, Ho-Gyum (Department of Polymer Science, Kyungpook National University) ;
  • Lee, Dong-Ho (Department of Polymer Science, Kyungpook National University) ;
  • Min, Kyung-Eun (Department of Polymer Science, Kyungpook National University)
  • 김호겸 (경북대학교 고분자공학과) ;
  • 이동호 (경북대학교 고분자공학과) ;
  • 민경은 (경북대학교 고분자공학과)
  • Published : 2007.01.31

Abstract

In this study, the flame retardancy and tensile properties of epoxy acrylate resin containing flame retardants based on phosphorous, bromine or metal hydroxide are investigated. It was found that the enhancement in flame retardancy of epoxy acrylate with decabromodiphenyl oxide (DECA) addition was better than the addition of 2,2,2-trichloroethyl dichlorophosphate (TCEDP). It seems that the high loading of TCEDP may delay the formation of crosslinking network and consequently decreases the conversion of epoxy acrylate. It was found that magnesium hydroxide ($Mg(OH)_2$) does not improve the flame retardancy of epoxy acrylate after added up to 40 wt%. The synergic effects were clearly observed for epoxy acrylate containing DECA/TCEDP combined flame retardants.

대표적인 UV 경화형 수지로 알려진 epoxy acrylate에 인계, 브롬계 난연제 및 금속 수산화물을 단독 또는 혼합하여 첨가하고 함량에 따른 난연 효과를 조사하였다. 난연성은 UL-94 V(ASTM D3801-87) 테스트법을 이용하여 측정하였다. 난연제 도입에 따른 물성의 저하를 막기 위해 montmorillonite(MMT)를 난연 보조제로 첨가하여 최종 경화체의 인장 특성의 변화를 확인하였다. 단일 난연제의 경우 브롬계 난연제인 decabromo-diphenyl oxide (DECA)가 함 할로겐 인계 난연제인 2,2,2-trichloroethyl dichlorophosphate (TCEDP)보다 낮은 함량에서 우수한 난연 효과를 나타냈으며 TCEDP의 함량이 증가할수록 경화 속도와 최종 전환율이 저하됨을 확인하였다. 금속 수산화물인 $Mg(OH)_2$는 40 wt%가 첨가되어도 난연 효과가 나타나지 않았다. 특히 DECA/TCEDP 혼합계는 MMT를 도입하지 않고도 기계적 물성의 저하 없이 탁월한 난연 효과가 나타나는 것으로 확인되었다.

Keywords

References

  1. J. H. Hong, UV Radiation Coating, Chosun University Press, 2002
  2. G. Pal and H. Macskav, Plastics, Their Behavior in Fires, Elsevier, Amsterdam, 1991
  3. W. C. Kuryla and A. J. Papa, Flame Retardancy of Polymeric Materials, Marcel Dekker, N. Y., 1973-1978
  4. D. K. Chattopadhyay, S. S. Panda, and K. V. S. N. Raju, Prog. Org. Coat., 54, 10 (2005) https://doi.org/10.1016/j.porgcoat.2004.12.007
  5. S. Jahromi, W. Gabrielse, and A. Braam, Polymer, 44, 25 (1993)
  6. Y. Tanaka, Epoxy Resin Chemistry and Technology, Marcel Dekker, N. Y., 1998
  7. C. L. Chiang and C. C. M. Ma, Eur. Polym. J., 38, 2219 (2002)
  8. J. Ding and W. Shi, Polym. Degrad Stabil., 84,159 (2004) https://doi.org/10.1016/j.polymdegradstab.2003.10.006
  9. J. S. Jang, H. S. Chung, M. H. Kim, and H. J. Sung, Polym. Test., 19, 269 (2000)
  10. J. D. Nam and K. J. Ahn, Polym. Sci. Tech. (Korea). 6, 459 (1995)
  11. S. B. Kwak, S. D. Hwang, J. D. Nam, J. S. Ko, H. K. Choi, and J. H. Kong, Polymer(Korea), 26, 260 (2002)
  12. P. R. Hornsby, Fire Mater., 18, 269 (1994)
  13. J. Wang, M. Y. Tung, F. Ahmad, and P. R. Hornsby, J Appl. Polym. Sci., 60, 1425 (1996)
  14. Z. Z. Wang, B. J. Qu, W. C. Fan, and D. Huang, J Appl. Polym. Sci., 81, 206 (2001) https://doi.org/10.1002/app.1407
  15. S. J. Park, S. W. Song, J. R. Lee, B. G. Min, and J. S. Shin, J. Korea Ind. Eng. Chem., 15, 41 (2004)
  16. J. H. Lee, J. H. Nam, D. H. Lee, M. D. Kim, J. H. Kong, Y. K. Lee, and J. D. Nam, Polymer(Korea), 27, 569 (2003)
  17. J. P. Kim, S. G. Lyu, K. S. Bae, and S. G. Sur, Polymer (Korea), 25, 263 (2001)
  18. C. P. Yang and T. W. Lee, J. Appl. Polym. Sci., 32, 3005 (2006)
  19. C. P. Yang and T. W. Lee, J. Appl. Polym. Sci., Part A; Polym. Chem., 27, 2239 (1989) https://doi.org/10.1002/pola.1989.080270322
  20. C. P. Yang. and T. W. Lee, J. Appl. Polym. Sci., Part A; Polym. Chem., 27, 3551 (1989) https://doi.org/10.1002/pola.1989.080270322
  21. J. Green, Polym. Degrad. Stabil., 54,189 (1996)
  22. I. W. Shim, H. J. Jo, H. S. Park, S. K. Kim, and Y. G. Kim, Polymer(Korea), 30, 238 (2006)