마이크로 머시닝 기술을 이용한 새로운 구조의 100 GHz DMR bandpass Filter의 설계 및 제작

Novel 100 GHz Dual-Mode Stepped Impedance Resonator BPF Using micromachining Technology

  • 백태종 (동국대학교 전자공학과 밀리미터파 신기술 연구센터) ;
  • 이상진 (동국대학교 전자공학과 밀리미터파 신기술 연구센터) ;
  • 한민 (동국대학교 전자공학과 밀리미터파 신기술 연구센터) ;
  • 임병옥 (동국대학교 전자공학과 밀리미터파 신기술 연구센터) ;
  • 윤진섭 (서일대학 컴퓨터전자과) ;
  • 이진구 (동국대학교 전자공학과 밀리미터파 신기술 연구센터)
  • Baek, Tae-Jong (MINT, Millimeter-wave INovation Technology research center) ;
  • Lee, Sang-Jin (MINT, Millimeter-wave INovation Technology research center) ;
  • Han, Min (MINT, Millimeter-wave INovation Technology research center) ;
  • Lim, Byeong-Ok (MINT, Millimeter-wave INovation Technology research center) ;
  • Yoon, Jin-Seob (Department of computer aided system, Seoil College) ;
  • Rhee, Jin-Koo (MINT, Millimeter-wave INovation Technology research center)
  • 발행 : 2007.12.25

초록

본 논문에서는 MMIC 응용을 위한 dielectric-supported air-gapped microstrip line (DAML) 구조를 이용하여 dual-mode stepped impedance 링 공진기를 설계 제작하였다. 링 공진기는 표면 마이크로머시닝 기술을 이용하여 만들어졌다. DAML ring resonator는 다층구조로써 공기중에 위치한 신호선과 MMIC 응용에 적합하도록 CPW가 한 평면에 구성되 있으며 DAML-CPW 트랜지션이 자유로운게 특징이다. DAML 링 공진기는 $10{\mu}m$ 높이로 GaAs 기판 으로부터 띄어져 있다. 대역통과 여파기는 dual-mode 공진을 하며 stepped impedance 이용한 구조이다. 측정결과로 중심주파수 97 GHz에선 감쇠특성은 15 dB, 삽입손실은 2.65 dB를 보였으며, 상대 대역폭은 12 %를 나타냈다. 이같은 구조의 대역통과 여파기는 MMIC 와의 직접화에 유리하다.

In this paper, we proposed the dual-mode stepped impedance ring resonator bandpass filter for MMIC (Microwave Monolithic Integrated Circuit) applications using the dielectric-supported air-gapped microstrip line (DAML). The ring resonator fabricated by surface micromachining technology. This filter consists of a DAML resonator layer and a CPW feed line. The DAML ring resonator is elevated with $10{\mu}m$ height from GaAs substrate surface. This bandpass filter is $1-{\lambda}g$ type stepped impedance ring resonator including dual-mode resonance. From the measurements, we obtained attenuation of over 15 dB and insertion loss of 2.65 dB at the center frequency of 97 GHz. Relative bandwidth is about 12 % at 97 GHz. Furthermore, the proposed bandpass filter is useful to integrate with conventional MMICs.

키워드

참고문헌

  1. Han-Shin Lee, Sung-Chan Kim, Byeong-Ok Lim, Dong-Hoon Shin and Jin-Koo Rhee, 'Fabrication of new micromachied transmission line with dielectric posts for millimeter-wave applications,' J. Micromech. Microeng, 14, pp 746-749, 2004 https://doi.org/10.1088/0960-1317/14/5/013
  2. T.-J. Baek, B.-S. Ko, D.-H. Shin, S.-C. Kim, B.-O. Lim, S.-K. Kim, H.-C. Park, and J.-K. Rhee, 'Fabrication of a Band-Reject Filter using Dielectric-Supported Air-gapped Microstriplines,' Microwave and Optical Technology Letters, vol. 44, no. 1, pp 1-24, Jan. 2005 https://doi.org/10.1002/mop.20530
  3. Baek-Seok Ko, Han-Shin Lee, Tae-Jong Baek, Sung-Chan Kim, Byeong-Ok Lim, Tae-Soon Yun, Dong-Hoon Shin, Young-Hoon Chun, Hyun-Chang Park, Jong-Chul Lee and Jin-Koo Rhee, 'Low Loss Rat-race Coupler and Miniaturized Branch-Line Coupler Fabrication for V-Band Range Using with Surface Micromachining Technology,' International Joint Conference of the TSMMW2005/MINT-MIS2005, pp 188-191, 2005
  4. Sung-Chan Kim, Baek-Seok Ko, Tae-Jong Baek, Byeong-Ok Lim, Dan An, Dong-Hoon Shin and Jin-Koo Rhee, 'Hybrid Ring Coupler for W-Band MMIC Applications using MEMS Technology,' IEEE Microwave and Wireless Components Letter, vol. 15, no. 10, pp. 652-654, Oct 2005 https://doi.org/10.1109/LMWC.2005.856684
  5. S. C. Kim, D. An, B. O. Lim, T. J. Baek, D. H. Shin, and J. K. Rhee, 'High-Performance 94-GHz Single Balanced Mixer using 70-nm MHEMTs and Surface Micromachined Technology,' IEEE Electron Device Letters, vol. 27, no. 1, pp 28-30, Jan 2006 https://doi.org/10.1109/LED.2005.861403
  6. Matsuo, M.; Yabuki, H.; Makimoto, M, 'Dual-mode stepped-impedance ring resonator for bandpass filter applications,' Microwave Theory and Techniques, vol. 49, issue 7, pp 1235-1240, July 2001 https://doi.org/10.1109/22.932241
  7. Stephen V. Robertson, Linda P. B. Katehi, Gabriel M. Rebeiz, 'Micromachined W-Band Filters,' Microwave Theory and Techniques, vol. 44, no. 4, pp 598-606, April 1996 https://doi.org/10.1109/22.491027
  8. Gaean Prigent, Eric Rius, Françis Le Pennec, Sandrick Le Maguer, Ceric Quendo, Gonzague Six, and Henri Happy, 'Design of Narrow-Band DBR Planar Filters in Si–BCB Technology for Millimeter-Wave Applications,' Microwave Theory and Techniques, vol. 52, no. 3, pp 1045 -1051, March 2004 https://doi.org/10.1109/TMTT.2004.823581
  9. Firas Sammoura, Ying Cai, Chen-Yu Chi, Toshiki Hirano, Liwei Lin', and Jung-Chih Chiao, 'A Micromachined W-Band Iris Filter,'The 13th Internation Conference on Solid-State Sensors, Acuators and Microsystems, pp 1067-1070, June 2005
  10. Farshid Aryanfar, Kamal Sarabandi, 'Characterization of Semilumped CPW Elements for Millimeter-Wave Filter Design,' Microwave Theory and Techniques, vol. 53, no. 4, pp 1288 -E1293, April 2005 https://doi.org/10.1109/TMTT.2005.845748
  11. Eric Rius, Gaëan Prigent, Henri Happy, Gilles Dambrine, Samuel Boret, and Alain Cappy, 'Wide- and Narrow-Band Bandpass Coplanar Filters in the W-Frequency Band,' Microwave Theory and Techniques, vol. 51, no. 3, pp 784- 791, March 2003 https://doi.org/10.1109/TMTT.2003.808586
  12. Stephen V. Robertson, Linda P. B. Katehi, and Gabriel M. Rebeiz, 'Micromachined Self-packaged W-Band Bandpass Filters,' IEEE MTT-S Digest, pp 1543-1546, 1995