• Title/Summary/Keyword: dielectric-supported air-gapped microstripline (DAML)

Search Result 3, Processing Time 0.017 seconds

Novel 100 GHz Dual-Mode Stepped Impedance Resonator BPF Using micromachining Technology (마이크로 머시닝 기술을 이용한 새로운 구조의 100 GHz DMR bandpass Filter의 설계 및 제작)

  • Baek, Tae-Jong;Lee, Sang-Jin;Han, Min;Lim, Byeong-Ok;Yoon, Jin-Seob;Rhee, Jin-Koo
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.12
    • /
    • pp.7-11
    • /
    • 2007
  • In this paper, we proposed the dual-mode stepped impedance ring resonator bandpass filter for MMIC (Microwave Monolithic Integrated Circuit) applications using the dielectric-supported air-gapped microstrip line (DAML). The ring resonator fabricated by surface micromachining technology. This filter consists of a DAML resonator layer and a CPW feed line. The DAML ring resonator is elevated with $10{\mu}m$ height from GaAs substrate surface. This bandpass filter is $1-{\lambda}g$ type stepped impedance ring resonator including dual-mode resonance. From the measurements, we obtained attenuation of over 15 dB and insertion loss of 2.65 dB at the center frequency of 97 GHz. Relative bandwidth is about 12 % at 97 GHz. Furthermore, the proposed bandpass filter is useful to integrate with conventional MMICs.

Fabrication of novel micromachined microstrip transmission line for millimeter wave applications (마이크로머시닝 기술을 이용한 새로운 형태의 고주파 저손실 Microstrip 전송선의 제작)

  • 이한신;김성찬;임병옥;신동훈;김순구;박현창;이진구
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.8
    • /
    • pp.37-44
    • /
    • 2004
  • This paper describes a new GaAs-based surface-micromachined microstrip line supported by dielectric post and air-gapped signal line with ground metal. This new type of dielectric-supported air-gapped microstripline(DAML) structure is developed using surface micromachining techniques to provide easy means of airbridge connection between the signal lines and to archive low losses at millimeter-wave frequency band with wide impedance range. Each DAMLs with the length of 5 mm are fabricated and the measured characteristics are compared with those of the conventional microstrip transmission line. These transmission lines are composed of 10 ${\mu}{\textrm}{m}$ height of signal line, post size of 10 ${\mu}{\textrm}{m}$ ${\times}$ 10 ${\mu}{\textrm}{m}$ and post height of 9 ${\mu}{\textrm}{m}$. By elevating the signal lines from the substrate using the micromachining technology, the substrate dielectric loss can be reduced Compared with of the conventional microstrip transmission line showing 7.5 dB/cm loss at 50 GHz, the loss can be reduced to 1.1 dB/cm loss at 50 GHz.

Study on the Fabrication of the Low Loss Transmission Line and LPF using MEMS Technology (MEMS 기술을 이용한 저 손실 전송선로와 LPF의 공정에 관한 연구)

  • 이한신;김성찬;임병옥;백태종;고백석;신동훈;전영훈;김순구;박현창
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.12
    • /
    • pp.1292-1299
    • /
    • 2003
  • In this paper, we fabricated new GaAs-based dielectric-supported air gapped microstriplines(DAMLs) using the surface MEMS and the LPF for Ka-band using the fabricated DAMLs. We elevated the signal lines from the substrate, in order to reduce the substrate dielectric loss and obtain low losses at millimeter-wave frequency band with wide impedance range. We fabricated LPF with DAMLs for Ka-band. Due to reducing the dielectric loss of DAMLs, the insertion loss of LPF can be reduced. Miniature is essential to integrate LPF with active devices, so that we fabricated LPF with the slot on the ground to reduce the size of the LPF. We compared a characteristic to LPF with the slot and LPF without the slot.