Pharmacomkinetics of Roxithromycin after Intravenous Administration in Broilers

록시스로마이신의 정맥주사 후 육계에서의 약물동태학적 분석

  • Published : 2006.06.01

Abstract

The aim of the present study was to investigate the disposition pharmacokinetics of roxithromycin in broilers. Roxithromycin was administered at a single dose of 20 mg/kg body weight by intravenous (i.v.) routes. Plasma concentrations of roxithromycin were determined by liquid chromatography/mass spectrometry. After a single i.v. dose plasma concentrations were best fitted to a two-compartment open model. The values of the pharmacokinetic parameters after i.v. administration were: elimination half-life = $5.83{\pm}1.79h$, mean residence time = $6.33{\pm}0.32h$, total body clearance = $0.55{\pm}0.15L/h/kg$, and volume of distribution at steady state = $3.47{\pm}0.84L/kg$. The pharmacokinetic interpretation of roxithromycin after i.v. administration revealed that the drug was well distributed throughout the body in broilers and slowly eliminated. More studies for the application of roxithromycin against poultry disease are needed to establish a suitable pharmaceutical formulation, propose optimum dosage regimens, investigate clinical efficacy and study the tolerability of repeated doses.

본 연구는 록시스로마이신의 정맥주사 후 육계에서의 약물동태학적 특성을 조사한것으로, 이때 록시스로마이신은 체중당 20 mg/kg 용량으로 정맥주사하였다. 시간에 따라 채혈하여 혈장을 분리한 후 액체크로마토그래프/질량분석기를 이용하여 혈장내 록시스로마이신의 농도를 측정하였다. 혈장내 록시스로마신 농도-시간 그래프의 분석은 two-compartment open model을 적용하는 것이 가장 적합하였다. 육계에서의 록시스로마이신의 약물동태학적 부변수의 값은 다음과 같았다. 소실 반감기 =$5.83{\pm}1.79h$, 평균체류 =$6.33{\pm}0.32h$, 청소율 =$0.55{\pm}0.15L/h/kg$ 및 정상상태 분포용적 = $3.47{\pm}0.84L/kg$ 육계에서 정맥주사 후 록시스로마이신은 늦은 소실과 체내 고른 분포의 약물동태학적 특성을 나타내었다. 록시스로마이신의 육계에 적용할 때에는 약물제형, 최적 용량용법, 임상효과 및 반복투여에 대한 내성등의 연구가 추후 요구된다.

Keywords

References

  1. Al-Humayyd MS. Pharmacokinetic interactions between erythromycin, clarithromycin, roxithromycin and phenytoin in the rat. Chemotherapy 1997; 43: 77-85 https://doi.org/10.1159/000239540
  2. Amsterdam D. Susceptibility testing of antimicrobials in liquid media. In: Lorian V (Eds.) Antibiotics in Laboratory Medicine, Baltimore, Williams and Wilkins. 1996: 53-105
  3. Bryskier AJ, Butzler JP, Neu HC and Tulkens PM. Macrolides: chemistry, pharmacology and clinical uses. Paris, Arnette blackwell. 1993
  4. Davila D, Kolacny-Babic L, Plavsic F. Pharmacokinetics of azithromycin after single oral dosing of experimental animals. Biopharm Drug Dispos 1991; 12: 505-514 https://doi.org/10.1002/bdd.2510120704
  5. Kees F, Holstege A, Ittner KP, Zimmermann M, Lock G, Scholmerich J, Grobecker H. Pharmacokinetic interaction between proton pump inhibitors and roxithromycin in volunteers. Aliment Pharmacol Ther 2000; 14: 407-412 https://doi.org/10.1046/j.1365-2036.2000.00731.x
  6. Lassman HB, Puri SK, Ho I, Sabo R and Mezzino MJ. Pharmacokinetics of roxithromycin (RU 28965). J Clin Pharmacol 1988; 28: 141-152 https://doi.org/10.1002/j.1552-4604.1988.tb05738.x
  7. Lavy E, Ziv G, Shem-Tov M, Glickman A. Minimal inhibitory concentrations for canine isolates and oral absorption of roxythromycin in fed and fasted dogs. J Vet Pharmacol Ther 1995; 18: 382-384 https://doi.org/10.1111/j.1365-2885.1995.tb00609.x
  8. Lim JH, Park BK, Yun HI. Determination of roxithromycin by liquid chromatography/mass spectrometry after multiple-dose oral administration in broilers. J Vet Sci 2003; 4: 35-39
  9. Macek J, Ptacek P, Klima J. Determination of roxithromycin in human plasma by high-performance liquid chromatography with spectrophotometric detection. J Chromatogr B Biomed Sci Appl 1999; 723: 233-238 https://doi.org/10.1016/S0378-4347(98)00533-7
  10. MacGowan AP, Bowker KE. Pharmacodynamics of antimicrobial agents and rationale for their dosing. J Chemother 1997; 9 (Suppl 1):64-73
  11. Markham A and Faulds D. Roxithromycin. An update of its antimicrobial activity, pharmacokinetic properties and therapeutic use. Drugs 1994; 48: 297-326 https://doi.org/10.2165/00003495-199448020-00011
  12. Motta M, Ribeiro W, Ifa DR, Moares ME, Moraes MO, Corrado AP, De Nucci G Bioequivalence evaluation of two roxithromycin formulations in healthy human volunteers by high performance liquid cromatography coupled to tandem mass spectrometry, Acta Physiol Pharmacol Ther Latinoam 1999; 49: 233-241
  13. Nightingale CH. Pharmacokinetics and pharmacodynamics of newer macrolides. Pediatr Infect Dis J 1997: 16: 438-443 https://doi.org/10.1097/00006454-199704000-00027
  14. Nilsen OG, Aamo T, Zahlsen K and Svarva P. Macrolide pharmacokinetics and dose scheduling of roxithromycin. Diagn Microbiol Infect Dis 1992; 15: 71S-76S https://doi.org/10.1016/0732-8893(92)90130-L
  15. Ohtani H, Taninaka C, Hanada E, Kotaki H, Sato H, Sawada Y, Iga T. Comparative pharmacodynamic analysis of Q-T interval prolongation induced by the macrolides clarithromycin, roxithromycin, and azithromycin in rats. Antimicrob Agents Chemother 2000; 44: 2630-2637 https://doi.org/10.1128/AAC.44.10.2630-2637.2000
  16. Sun J, Zhang T, Qiu F, Liu Y, Tang J, Huang H, He Z. Impact of pharmaceutical dosage forms on the pharmacokinetics of roxithromycin in healthy human volunteers. J Antimicrob Chemother 2005; 55: 796-799 https://doi.org/10.1093/jac/dki082
  17. Yamaoka K, Nakagawa T, Uno T. Application of Akaike's information criterion (AIC) in the evaluation of linear pharmacokinetic equations. J Pharmacokinet Biopharm 1978; 6: 165-175 https://doi.org/10.1007/BF01117450
  18. Zhang SQ, Zhang LF, Xing J, Zhong DF. Metabolism of roxithromycin in dogs. Yao Xue Xue Bao 2003; 38: 374-379
  19. Zhong D, Li X, Wang A, Xu Y, Wu S. Identification of the metabolites of roxithromycin in humans. Drug Metab Dispos 2000; 28: 552-559