DOI QR코드

DOI QR Code

The Suggestion of Nonlinear 4-Parameters Model for Predicting Creep Deformation of Concrete

콘크리트 크리프 변형 예측을 위한 비선형 4-매개변수 모델의 제안

  • 이창수 (서울시립대학교 토목공학과) ;
  • 김현겸 (서울시립대학교 토목공학과)
  • Received : 2005.03.02
  • Accepted : 2005.10.14
  • Published : 2006.01.31

Abstract

To obtain realistic stress-strain relation in concrete, it is necessary to improve the constitutive model for creep and shrinkage of concrete. This study is made up with predicting model of creep using rheological approach and mathematical development which is solution for phenomenon of concrete creep. Long-term deformation components are combined based on traditional 4-parameters model. Creep deformation is obtained adequately using 4-parameters determined by considering aging effect and microprestress among gels. And coefficient of effective viscosity is able to represent both basic creep and total creep included drying creep. This study attempt to establish mathematical model considering effects of aging, hydration, and variations of pore humidity. It can predict both basic creep and total creep. Values of result between prediction and experiment have greater than correlation factor 99%. Additionally experimental results report bad consentaneity with highway design specification adopting FIB MC 90. Rather than those are similar to FIB MC 90 rev.99.

콘크리트 구조물의 실제적인 응력과 변형률의 관계를 알기 위해서는 크리프와 수축에 관한 구성방정식을 정량화하는 것이 필요하다. 본 연구는 콘크리트의 시간의존적인 변형 중에서 크리프 변형에 관한 현상학적인 문제를 수학적으로 전개하고 유변학적 접근방법을 사용하여 크리프에 관한 예측모델을 구성한다. 고전적인 4-매개변수 모델에 기초하여 각각의 변형성분을 조합하고, 적절한 크리프 변형을 얻어내기 위한 4개의 매개변수들을 재령영향과 겔 입자간의 연결을 제거하려는 미세프리스트레스의 영향을 고려하여 비선형 함수로 구성된 매개변수들을 전개하며 회복이 불가능한 점성변형에 대하여 습윤평형상태와 건조상태에서 모두 예측할 수 있는 유효점성계수를 유도한다. 본 연구에서 제안한 예측모델은 실험결과와 상관계수 99%이상의 우수한 결과를 제공하고 있다.

Keywords

References

  1. 건설교통부(1999) 콘크리트구조설계기준, 한국콘크리트학회, 대한 건축학회
  2. 송영철, 송하원, 변근주(2000) 단기크리프 시험결과를 이용한 콘크리트의 크리프 예측식의 수정, 한국콘크리트학회지, 한국콘크리트학회, 제12권, 제4호, pp.69-78
  3. AASHTO (1994) AASHTO Design Specification 1994
  4. ACI Committee 209R-92 (1994) Prediction of creep, shrinkage and temperature effects in concrete structures, ACI Manual of Concrete Practice, Part I
  5. ASTM Committee C-9 (1983) Standard test method for creep of concrete in compression, Annual Book of ASTM Standards, Vol. 04. 02., C-5l2-82
  6. Bazant, Z.P. (2004) Durability modeling based on fracture, diffusion, chemomechanics and creep: recent advances, proc. of 4th international conference on concrete under severe Conditions, CONSEC '04, Seoul, pp.3-16
  7. Bazant, Z.P., and Carol, I. (1997) Viscoelasticity with aging caused by solidification of non-aging constituent, J. of Engrg. Mech. ASCE, Vol. 119, pp.2252-2269
  8. Bazant, Z.P., and Prasannam, S. (1989) Solidification theory for concrete Creep. I : Formulation, J. of Engrg. Mech. ASCE, Vol. 115, pp.1691-1703 https://doi.org/10.1061/(ASCE)0733-9399(1989)115:8(1691)
  9. Bazant, Z.P., and Prasannam, S. (1989) Solidification theory for concrete Creep. II : verification and application, J. of Engrg. Mech. ASCE, Vol. 115, pp.1704-1725 https://doi.org/10.1061/(ASCE)0733-9399(1989)115:8(1704)
  10. Bazant, Z.P., and Wittmann, F.H. (1982) Creep and shrinkage in concrete structures, John Wiley & Sons, Inc., New York
  11. Bazant, Z.P., Hauggaard, A.B., Baweja, S., and Ulm, F.J. (1997) Microprestress-solidification theory for concrete Creep. I: aging and drying effects, J. of Engrg. Mech. ASCE. Vol. 123, pp.1188-1194 https://doi.org/10.1061/(ASCE)0733-9399(1997)123:11(1188)
  12. Bazant, Z.P., Hauggaard, A.B., Baweja, S., and Ulm, F.J. (1997) Microprestress-solidification theory for concrete Creep. II: algorithm and verification, J. of Engrg. Mech. ASCE, Vol. 123, pp.1195-1201 https://doi.org/10.1061/(ASCE)0733-9399(1997)123:11(1195)
  13. CEB-FIP (1990) CEB-FIP Model Code 90 for Concrete Structures, Comite Euro-International du Beton, Lausanne
  14. Eierle. B. and Schikora. K. (1999) Computational viscoelasticity of aging materials, ECCM. '99
  15. FIB (1999)CEB-FIP Model Code 90 for Concrete Structures, Structural Concrete, Vol. I, pp.37-61, Federation Internationale du Beton
  16. Gilbert, R.I. (1988) Time Effects in Concrete Structures, Elsevier, Amsterdam-Oxford- New York- Tokyo
  17. JCI Technical Committee Report on Autogenous Shrinkage (1998) Autogenous shrinkage of concrete, preceeding of the international workshop, Tazawa, E&FN Spon, London, pp.3-63
  18. JSCE (1996) Japanese Standard Specification for Design of Concrete Structures
  19. Neville, A.M. (1994) Properties of Concrete, Longman Scientific & Technical, London
  20. Neville, A.M., Dilger, W.H., and Brooks, U. (1983) Creep of Plane and Structural Concrete, Con-struction Press, London-New York
  21. Niyogi, A.K., Hau, P., and Meyers, B.L. (1973) The influence of age at time of loading on basic and drying creep, Cement and Concrete Research, Vol. 3, pp.633-644 https://doi.org/10.1016/0008-8846(73)90100-2
  22. Okamoto, K. and Endoh, T. (1988) A study on acknowledge of deformation in very early aging concrete subjected to sustained load, proc. of JSCE, Vol. 9, No. 396, pp. 69-77
  23. RILEM Committee TC 69 (1988) State of the Art in Mathematical Modeling of Creep and Shrinkage of Concrete, John Wiley & Sons, Inc., U.K