Optimal Conditions for the Production of (+)-Jasmonic acid by Diplodia gossypina ATCC10936

Diplodia gossypina ATCC10936 균주를 이용한 (+)-Jasmonic acid의 생산조건 최적화

  • Go, In-Ho (Department of Food Science and Technology, Sejong University) ;
  • Kim, Kyoung-Ju (Department of Food Science and Technology, Sejong University) ;
  • Kim, Yong-Hwi (Department of Food Science and Technology, Sejong University)
  • 고인호 (세종대학교 생명식품공학부 식품공학과) ;
  • 김경주 (세종대학교 생명식품공학부 식품공학과) ;
  • 김용휘 (세종대학교 생명식품공학부 식품공학과)
  • Published : 2006.09.30

Abstract

Diplodia gossypina ATCC10936 produced chiral specific (+)-jasmonic acid (JA) that is the most biologically active form. (+)-JA is a plant growth hormone and also one of the most important aroma compounds responsible for jasmin-like aroma note. In order to develop a commercial bioprocess for the production of (+)-JA, optimal culture conditions for D. gossypina ATCC10936 were investigated. D. gossypina produced (+)-JA using either fructose and glucose as a sole carbon source. As a nitrogen source, $NaNO_3$ gave relatively high (+)-JA production. The optimal temperature for the production of (+)-JA by D. gossypina was $28^{\circ}C$, and optimal agitation was found to be 200 rpm. D. gossypina produced (+)-JA upto 600 mg/L in SM medium, although the highest level of biomass was obtained in PDMYS medium.

Diplodia gossypina ATCC 10936에 의해 생산되는 카이럴(+)-jasmonic acid(JA)는 생물학적으로 가장 활성이 높은 형태로 식품성장 hormone으로서 뿐만 아니라 상업적으로 jasmingid 생산에 이용되는 중요한 물질중 하나이다. (+)-JA의 대량 생산을 위한 공정 개발을 위해, D. gossypina ATCC10936을 이용하여 (+)-JA 생산을 위한 최적배양 조건을 조사하였다. 최적 탄소원으로는 fructose와 glucose로 확인되었으며 질소원으로는 $NaNO_3$ (+)-JA를 생산에 가장 적합하였다. (+)-JA 생산의 최적 온도와 회전 교반수는 $28^{\circ}C$와 200 rpm으로 나타났다. 균사체의 균체량은 PDMYS 배지에서 최대로 증가하였으나, (+)-JA 생산은 SM 배지에서 최대 600 mg/L가 생산되었다.

Keywords

References

  1. 김용휘. 2004. 생유기합성:새로운 환경 친화적 정밀화학 물질 합성을 위한 생합성과 유기합성의 접목. 미생물과 산업. 30, 11-20
  2. 이우영, 채우기, 박외숙. 1987. 테르펜계 천연향료 합화 물의 합성에 관한연구. 과학기술부과제 87-0306-06-13
  3. 홍수정, 이철원, 송범훈. 1999. Methyl jasmonate 처리에 의한 벼 저장의 저온장애 경감효과. 한국농화학회지. 11, 284-293
  4. Aldridge, D.C., S. Galt, D. Giles, W.B. Turner. 1971. Metabolites of Lasioplodia theobromae. J. Chem. Soc. Chem. Commun. 1623- 1627
  5. Eng, F., M. Gutirrez-Rojas, and E.F. Torres. 1998. Culture conditions for Jasmonic acid and biomass production by Botryodiplodia theobromae in submerged fermentation. Process Biochemistry. 33, 715-720 https://doi.org/10.1016/S0032-9592(98)00035-1
  6. Farbood, M., R. Blocker, L. McLean, M. Sprecker. M. McLean, N. Kossiakoff, A. Kim, and M. Hagedorn. 2004. Bioprocess for the high-yield production of food flavor-acceptable jasmonic acid and methyl jasmonate, novel jasmonic acid isomer produced thereby and uses thereof. US Patent No. 6, 458-569
  7. Hamberg, M. and H.W. Gardner. 1992. Oxylipin pathway to jasmonates: biochemistry and biological significance. Biochim. Biophysica Acta. 1165, 1-8 https://doi.org/10.1016/0005-2760(92)90069-8
  8. Kim, A.Y. 2005. Application of biotechnology to the production of natural fla and fragrance chemicals. ACS symposium series 908, 60-74
  9. Meyer, A., O. Miersch, C. Buttner, W. Dathe, and G. Sembdner. 1984. Occurrence of the plant growth regulator jasmonic acid in plants. J. of plant growth regulation. 3, 1-8 https://doi.org/10.1007/BF02041987
  10. Vick, B.A. and D.C. Zimmerman. 1984. Biosynthesis of jasmonic acid by several plant species. Plant Physiol. 75, 458-46 https://doi.org/10.1104/pp.75.2.458