Application of qDVC Method for Measuring Viable Cells in Lakes

호수 생태계에서 살아있는 세균을 측정하기 위한 qDVC 방법의 적용

  • Kim, Mi-Ree (Dept. of Environmental Science, Kangwon National University) ;
  • Seo, Eun-Young (Dept. of Environmental Science, Kangwon National University) ;
  • Choi, Seung-Ik (Institute of Environment Research, Kangwon National University) ;
  • Ahn, Tae-Seok (Dept. of Environmental Science, Kangwon National University)
  • Published : 2006.09.30

Abstract

For measuring the viable cells in lakes, quantitative direct viable count (qDVC) method is applied. In the qDVC process, the final concentration of glycine is fixed as 2%. For confirming the effectiveness of qDVC for enumerating the viable cells, the viable bacterial numbers were measured by plate count, CTC reduction method and qDVC method at 5 different lakes. Among these 3 methods, the bacterial numbers by qDVC is $2.4{\sim}6.0$ times higher than those by the other 2 methods. And by the qDVC method, the viable cells were easily discriminated from dead or dormant cells.

호소수내의 '살아있는 세균'을 측정하기 위하여 quantitative direct viable count (qDVC) 방법을 적용하였다. qDVC방법에 적용되는 최적 glycine 농도는 2%였으며, '살아있는 세균'을 계수하는데 있어서 평판계수법, CTC법 보다는 qDVC 방법이 보다 효과적이라는 것을 확인하였다. qDVC방법으로 '살아있는 세균'을 측정한 결과 다른 두 방법보다 $2.4{\sim}6.0$배 높은 값이었다. 또한 qDVC방법은 '살아있는 세균'을 죽은 세포 또는 휴면세포와 쉽게 구별할 수 있었다.

Keywords

References

  1. 석정현, 홍선희, 김범철, 안태석. 2001. 소양호에서 활성세균수의 계절적.수직적 변화. 한국미생물학회지. 37, 80-84
  2. 이동훈, 안태석, 조규송. 1990. 소양호에서의 종속영양세 균의 종 구성 및 alkaline phosphatase 분비 세균에 관한 연구. 한국미생물학회지. 28, 204-219
  3. 최승익. 1996. 소양호의 세균개체수와 활성도 변화에 관 한 연구. 이학박사학위논문, 강원대학교
  4. 홍선희, 김옥선, 송홍규, 이동훈, 안태석. 2001. Bacillus 속 세균을 검출하기 위한 fluorescent in situ hybridization 방법의 개발. 한국미생물학회지. 37, 204-208
  5. Amann, R., W. Ludwig, and K.H. Schleifer. 1994. Indentification of uncultured bacteria: A challenging task for molecular taxonomists. ASM news. 60, 360-365
  6. Creach, V., A.C. Baudoux, G. Bertru, and B.L. Rouzic. 2003. Direct estimate of active bacteria: CTC use and limitations. J. Microbiol. Methods 52, 19-28 https://doi.org/10.1016/S0167-7012(02)00128-8
  7. De Jonge, B.L., Y.S. Chang, N. Xu, and D. Gage. 1996. Effect of exogenous glycine on peptidoglycan composition and resistance in a methicillin-resistant Staphylococcus aureus strain. J. Antimicrob. Chemother. 40, 1498-1503
  8. Hagstrom, A., U. Larsson, P. Horstedt, and S. Normark. 1979. Frequency of dividing cells, a new approach to the determination of bacterial growth rates in aquatic environments. Appl. Environ. Microbiol. 37, 805-812
  9. Hammes, W., K.H. Schleifer, and O. Kandler. 1973. Mode of action of glycine on the biosynthesis of peptidoglycan. J. Bacteriol. 116, 1029-1053
  10. Helbling, E.W., E.R. Marguet, V.E. Villafane, and O. Holm-Hansen. 1995. Bacterioplankton viability in antarctic waters as affected by solar ultraviolet radiation. Mar. Ecol. Prog. Ser. 126, 293-298 https://doi.org/10.3354/meps126293
  11. Hobbie, J.E., R.F. Daley, and S. Japer. 1977. Use of nucleopore filters for counting bacteria by fluorescence microscopy. Appl. Environ. Microbiol. 33, 1225-1228
  12. Joux, F. and P. LeBaron. 1997. Ecological implications of an improved direct viable count method for aquatic bacteria. Appl. Environ. Microbiol. 63, 3643-3647
  13. Kogure, K., U. Simidu, and N. Taga. 1979. A tentative direct microscopic method for counting living marine bacteria. Can. J. Microbiol. 25, 415-420 https://doi.org/10.1139/m79-063
  14. Kogure, K., U. Simidu, and N. Taga. 1984. An improved direct viable count method for aquatic bacteria. Arch. Hydrobiol. 102, 117-122
  15. Neuhaus, F.C. and W.P. Hammes. 1981. Inhibition of cell wall biosynthesis by analogues of alanine. Pharm. Ther. 14, 265-319 https://doi.org/10.1016/0163-7258(81)90030-9
  16. Novitsky, J.A., and R.Y. Morita. 1978. Possible strategy for the survival of marine bacteria under starvation conditions. Mar. Biol. 48, 289-295 https://doi.org/10.1007/BF00397156
  17. Rodriguez, G.G., D. Phipps, K. Ishiguro, and H.F. Ridgway. 1992. Use of a fluorescence redox probe for direct visualization of actively respiring bacteria. Appl. Environ. Microbiol. 58, 1801-1808
  18. Yokomaku, D., N. Yamaguchi, and M. Nasu. 2000. Improved direct viable count procedure for quantitative estimation of bacterial viability in freshwater environments. Appl. Envion. Microbiol. 66, 5544-5548 https://doi.org/10.1128/AEM.66.12.5544-5548.2000
  19. Zimmermann, R., R. Iturriaga, and J. Becker-Birck. 1978. Simultaneous determination of the total number of aquatic bacteria and the number theroof involved in respiration. Appl. Environ. Microbiol. 36, 926-935