Finite Series in Chosun Dynasty Mathematics

조선(朝鮮) 산학(算學)의 퇴타술

  • Hong Sung-Sa (Department of Mathematics, Songang University)
  • Published : 2006.05.01

Abstract

We study the theory of finite series in Chosun Dynasty Mathematics. We divide it into two parts by the publication of Lee Sang Hyuk(李尙爀, 1810-?)'s Ik San(翼算, 1868) and then investigate their history. The first part is examined by Gyung Sun Jing(慶善徵, 1616-?)'s Muk Sa Jib San Bub(默思集算法), Choi Suk Jung(崔錫鼎)'s Gu Su Ryak(九數略), Hong Jung Ha(洪正夏)'s Gu Il Jib(九一集), Cho Tae Gu(趙泰耉)'s Ju Su Gwan Gyun(籌書管見), Hwang Yun Suk(黃胤錫)'s San Hak Ib Mun(算學入門), Bae Sang Sul(裵相設)'s Su Gye Soe Rok and Nam Byung Gil(南秉吉), 1820-1869)'s San Hak Jung Ei(算學正義, 1867), and then conclude that the theory of finite series in the period is rather stable. Lee Sang Hyuk obtained the most creative results on the theory in his Ik San if not in whole mathematics in Chosun Dynasty. He introduced a new problem of truncated series(截積). By a new method, called the partition method(分積法), he completely solved the problem and further obtained the complete structure of finite series.

조선 산학의 퇴타술의 역사를 연구한다. 이상혁(李尙爀)$(1810\sim?)$의 익산(翼算)(1868)이 출판되기 전의 역사와 익산(翼算)의 결과로 나누어 연구한다. 경선징(慶善徵)$(1616\sim?)$의 묵사집산법(默思集算法)부터 남병길(南秉吉)$(1820\sim1869)$의 산학정의(算學正義)(1867)까지의 산서를 통하여 익산(翼算) 이전의 퇴타술은 큰 발전을 이루지 못한 것을 조사한다. 이상혁(李尙爀)은 조선(朝鮮) 산학(算學)에서 가장 독창적인 방법을 써서 새로운 결과를 얻어낸다. 그는 퇴타술을 구조적으로 해결하고, 또 새로운 문제인 절적(截積)과 이를 위한 분적법(分積法)을 도입하여 이의 구조도 완전히 밝혀내었다.