Investigation of Post-seismic Sites Using Local Seismic Tomography in the Korean Peninsula

지진 토모그래피를 이용한 한반도의 과거진원지역의 특성 연구

  • Kim So-Gu (Department of Earth and Marine Sciences, Hanyang University The Korea Seismological Institute) ;
  • Bae Hyung-Sub (Department of Earth and Marine Sciences, Hanyang University The Korea Seismological Institute)
  • 김소구 (한양대학교 지구해양과학과, 한국 지진 연구소) ;
  • 배형섭 (한양대학교 지구해양과학과, 한국 지진 연구소)
  • Published : 2006.04.01

Abstract

Three dimensional crustal structure and source features of earthquake hypocenters on the Korean peninsula were investigated using P and S-wave travel time tomography. The main goal of this research was to find Vp/Vs anomalies at earthquake hypocenters as well as those of crustal structure of basins and deep tectonic settings. This allowed fer the extrapolation of more detailed seismotectonic force from the Korean peninsula. The earthquake hypocenters were found to have high Vp/Vs ratio discrepancies (VRD) at the vertical sections. High V/p/Vs ratios were also found in the sedimentary basins and beneath the Chugaryong Rift Zone (CRZ), which was due to mantle plume that subsequently solidified with many fractures and faults which were saturated with connate water. The hypocenters of most earthquakes were found in the upper crust for Youngwol (YE), Kyongju (KE), Hongsung (HE), Kaesong (KSE), Daekwan (DKE), and Daehung (DHE) earthquakes, but near the subcrust or the Moho Discontinuity for Mt. Songni (SE), Sariwon (SRE) and Mt. Jiri (JE) earthquakes. Especially, we found hot springs of the Daekwan, Daehung and Unsan regions coincide with high VRD. Also, this cannot rule out the possibility that there are some partial meltings in the subcrust of this region. High VRD might indicate that many faults and fractures with connate water were dehydrated when earthquakes took place, reducing shear modulus in the hypocenter areas. This is can be explained by due to the fact that a point source which is represented by the moment tensor that may involve changes in volume, shear fracture, and rigidity. High Vp/Vs ratio discrepancies (VRD) were also found beneath Mt. Backdu beneath 40 km, indicating that magma chamber existed beneath Mt. Backdu is reducing shear modulus of S-wave velocity.

한반도의 3차원적인 지각구조와 진원의 특성을 P파와 S파의 주행시간 토모그래피 기법을 이용하여 연구하였다. 이 연구의 주요 목적은 진원, 분지 및 심부 구조지역에서의 Vp/Vs 비율의 이상 대를 찾기 위함이다. 이것은 한반도의 보다 세부적인 지진 구조력 데이터의 예측을 고려했다. 지진 토모그래피를 이용한 본 연구의 결과에서 진원에서의 높은 Vp/Vs 비율의 차이를 수직성분에서 찾을 수 있었다. 퇴적 분지와 추가령 구조곡 아래에서 높은 Vp/Vs 비율이 나타났다. 이는 마그마 분출 후 마그마가 고체화되고, 원생수(connate water)로 포화된 여러 파쇄대와 단층에 의한 것으로 추정되어진다. 대부분의 진원에서 높은 Vp/Vs 비율 차이(VRD)를 찾을 수 있었으며, 영월, 경주, 홍성, 대흥, 대관, 랑님 지진의 경우 상부지각에서 속리산, 사리원, 지리산 지진 등은 하부지각 또는, 모호 불연속면 근처에서 나타났다. 특히 대관, 대흥 및 운산에 있는 온천 지역과 높은 VRD가 일치함을 볼 수 있었다. 이것은 또한, 이 지역 하부지각에 용융체(partial melting)의 존재 가능성을 시사한다. 높은 Vp/Vs 비율 차이(VRD)는 단층과 파쇄대에 존재하던 액체 (connate water)가 지진발생 후 탈수화 작용(dehydration)이 발생하여, 강성률이 감소함을 나타낸다. 이러한 것은 진원이 부피의 변화, 전단 파쇄대(shear fracture), 장성률(rigid)의 변화를 포함하는 모멘트 텐서(moment tensor) 에 의해 표현된다는 사실에 기인한다는 것이다. 높은 Vp/Vs 비율의 차이(VRD)는 또한, 백두산의 40km 깊이 아래에서 찾을 수 있는데 이는 강성률을 감소시키는 마그마 방(magma chamber)가 존재함을 암시해준다.

Keywords

References

  1. 김상조 (1983) 지진파를 이용한 남한의 지각구조 연구. 한양대학교 석사학위 논문, 66 pp
  2. Bijwaard, H., W. Spakman and E. R. Engdahl (1998) Closing gap between regional and global travel time tomography. J. Geophys. Res., vol. 103, 30055-30078 https://doi.org/10.1029/98JB02467
  3. Catchings, R. D. (1999) Regional Vp, Vs, Vp/Vs, and Poisson's ratios across earthquake source ones from Memphis. Tennessee, to St. Louis Missouri, Bull. Seism. Soc. Am., vol. 89, 1591-1605
  4. Catchings, R. D. (2002) M. R. Rymer, J., A. Goldman, J., A. Hole, R. Huggins. and C. Lippus, High-resolution seismic velocities and shallow structure of the San Andreas Fault Zone at Middle Mountain. Parkfield, California, Bull. Seism. Soc. Am., vol. 92, 2493-2503 https://doi.org/10.1785/0120010263
  5. Chiu, J. and S. G. Kim (2004) Estimation of regional seismic hazard in the Korean Peninsula sing historical earthquake data between A. D. 2 and 1995. Bull. Seism. Soc. Am., vol. 94, 269-284 https://doi.org/10.1785/0120010256
  6. Cho, J.D., J. H. Choi, M. T. Lim, and I. H. Park (1997) The study on the Bouguer gravity anomaly of the southern part of Korea. Bulletin of the Seismological Association of the Far East. vol. 3. 212-224
  7. Choi, K. S., G. V. R., Kumar and K. Y. Rim (1999) Qualitative interpretation of Bouguer anomaly in the southern part of the Korean Peninsula. Geoscience Journal, vol. 3, 49-54 https://doi.org/10.1007/BF02910234
  8. Kharkiv, A. D., N. Zinchuk, and B. M. Zuev (1997) Diamond History (in Russian). Nedra, Moscow, 601 pp
  9. Rim, S. G. (1978) Linear inversion technique in seismoacoustic processing. Kor. Inst. Minneral and Mining Engineer Soc., vol. 15, 186-196, 1978
  10. Rim, S.G. and E. Gao (1997) Preliminary crustal studies of the Korean Peninsula using Lg-coda Q, Bulletin of the Seismological Association of the Far East, vol. 3, 121-139
  11. Rim, S.G. and Q. Li (1998a) 3D crustal velocity tomography in the southern part of the Korean Peninsula). Econ. Environ. Geol., vol. 31, 127-139
  12. Rim, S.G. and Q. Li (1998b) 3D crustal velocity tomography in the Central Korean Peninsula. Econ. Environ. Geol., vol. 31, 235-247
  13. Rim, S.G., Q. Li, E. Lkhasuren, J. Lee, and H. S. Jang (2000) 3D seismic tomography using travel-times and waveform of multi-phase. CT Theory and Applications, vol. 9, 44-47
  14. Kim, S. G. andJ. S. Shin (2003) Study of crustal structure in North Korea using 3D velocity tomography. Korean Soc. of Engineering Geology, vol. 13, 293-308
  15. Kim, S. G., E. Lkhasuren, P. H. Park (2004) The low seismic activity of the Korean Peninsula surronded by high earthquake countries. Jounal of Seismology, vol. 8, 91-103 https://doi.org/10.1023/B:JOSE.0000009500.04368.86
  16. Lee, D. S. (ed.) (1987) Geology of Korea. The Kyohak-Sa Publishing Co., Seoul, Korea, 514 pp
  17. Masaitisa, V. L. (1964) Geology of Korea (in Russian). Nedra, Moscow, 263pp
  18. Pak, C. S. (1993) Earthquakes, in Geology of Korea, edited by Foreign Language Book Publishing House, Pyongyang, DPRK, 619 pp
  19. Paige, C. C. and M. A. Saunders (1982) LSQR: an algorithm for sparse linear equations and sparse least squares. ACM trans. Math. Soft, vol. 8, 43-71 https://doi.org/10.1145/355984.355989
  20. Pulliam, R. J., Vasco, D. W. and Johnson L. R. (1993) Tomographic Inversions for Mantle P Wave Velocity Structure Based on the Minimization of $1^{2}$ and $1^{1}$ norms of International Seismological Centre Travel time Residuals. J. Geophys. Res., vo!. 98(Bl), 669-734
  21. Roecker, S. W. (1993) Tomography in zones of collision: practical considerations and examples. In : H. M. Iyer and K. Hirahara(Editors), Seismic Tomography, Theory and Practice, Chapman and Hall, London, 584-612
  22. Tarantola, A. (1987) Inverse Problem Theory, Methods for Data Fitting and Model Parameter Estimation. Elsevier, 613 pp
  23. Thurber, C. H., S. R, (1995) Atre and D. Eberhart-Phillips, Three-dimensional Vp and Vp/Vs structure at Loma Prieta, California, from local earthquake tomography. Geophys. Res. Lett., vol. 22, 3079-3082 https://doi.org/10.1029/95GL03077
  24. Van der Sluis, A., and H. A. Van der Vorst (1987) Numerical solution of large, sparse linear algebraic systems arising from tomographic problems. In: G. Nolet (Editor), Seismic Tomography, Reidel, Dortrecht, 49-83, 1987
  25. Zelt, A. C. (1998) Lateral velocity resolution from threedimensional seismic refraction data. Geophys. J. Int., vol. 135, 1101-1112 https://doi.org/10.1046/j.1365-246X.1998.00695.x
  26. Zelt, C. A., P. J. Barton (1998) Three-dimensional seismic refraction tomography: a comparison of two methods applied to data from the Faeroe Basin. Journal of geophysical research, vol. 103, 7187-7210 https://doi.org/10.1029/97JB03536
  27. Zhao, D., O. P. Mishra, and R. Sanda (2002) Influence of fluids and magma on earthquakes: seismological evidence. Phys. Earth Planet Int., vol. 132, 249-267 https://doi.org/10.1016/S0031-9201(02)00082-1