• Title/Summary/Keyword: magma chamber

Search Result 32, Processing Time 0.028 seconds

Petrological Evolution of the Saryangdo Tuff in Western Tongyeong (통영 서부 사량도응회암의 암석학적 진화)

  • Lee, So Jin;Hwang, Sang Koo;Song, Kyo-Young
    • The Journal of the Petrological Society of Korea
    • /
    • v.28 no.2
    • /
    • pp.71-83
    • /
    • 2019
  • The volcanic rocks in Saryangdo area are composed of Witseom Andesite, Punghwari Tuff, Araetseom Andesite, Obido Formation, Namsan Rhyolite and Saryangdo Tuff in ascending order. The volcanic rocks has a range of andesite-rhyodacite-rhyolite, which indicates calc-alkaline series and volcanic arc of orogenic belt. In Harker diagrams for trace element and REE pattern, these are also distinguished into so three groups(Witseom Andesite, Araetseom Andesite and Saryangdo Tuff) that each unit is interpreted to have originated in different magma chamber. The Saryangdo Tuff exhibits systematically(chemical zonations that gradually change) from lower dacite to upper rhyolite in section. The systematic sequence of compositional variations suggests that the tuffs were formed by successive eruptions of upper to lower part of a zoned magma chamber in which relatively dacitic magma is surrounded around rhyolitic magma of the central part. The zoned magma chamber was formed from marginal accretion and crystal settling that resulted form magmatic differentiations by fractional crystallization.

Intrusive Phases and Igneous Pricesses in the Yeongju Batholith (영주저반의 관입상과 화성과정)

  • 황상구
    • Economic and Environmental Geology
    • /
    • v.32 no.6
    • /
    • pp.669-688
    • /
    • 1999
  • The Yeongju granitoid batholith is a plutonic complex of huge area (1180km2) intruding the metamorphic rocks of the Yeongnam massif. The batholith, which is divided into fivelithofacies, consists of three separate plutons. The oldest Buseok pluton comprises four lithofacies: hornblende biotite tonalite, porphyrotoc biotite granodiorite, equigranular biotite grandiorite and biotite granite. The middle Chunyang pluton has been called as Chunyang granite that ranges in compostion from granodiorite to granite. The youngest Jangsu pluton is intrusions that has lithofacies of two mica granite. The contact between Buseok pluton and the rest two plutons shows obvious intrusive relations, but relation between the Chunyang and the Jangsu pluton is far away, so gives no indication of relative ages. Changes in nextures and micristructures, as well as in the mineral contents, take place between rock types og the plutons. only the Buseok pluton shows faliations of two type: magmatic foliation and regional mylonal foliation. K-Ar age deteminations fall into 171.7$\pm$3.2~162.3$\pm$3.1 Ma in the Buseok pluton, 153.9$\pm$2.9 Ma in the Chunyang pluton and 145.3$\pm$2.7 Ma in the jangsu Pluton. The batholith presents three separate intrusive phases which range in composition from tonalite to granite to granite. Each intrusive phase apperars to have been intruded in a pulse from an underlying, differentiating magma. The petrochemical data showthat three plutons are within the diagnostic range for continental arc orogenic tectonic setting, whereas Jangsu pluton approaches postorogenic setting. The data suggest that three plutons are calc-aclkalline series, and that temporal compositional variations change progerssively from tonalite through grandiorite to granite between the intrusive phases. so we consider that the magmas for all the phases were probably derived from a differentiation by fractional crystallization of a parental magma. The tonalite magma of the Buseok phase was tapped was tapped from a chamber deep in the crust, and then would have to rise at a rapid rate to its final level of emplacement. The tonalite magma in the chamber was gradually enolved through granodiorite magma into granite magma by fractional crystallization. The magmas of the younger phases were respectively tapped with temporal interval from a evolved magma of the chamber that rose into a shallower lever in the crust, and rose to their present level of emplacement.

  • PDF

Numerical Heat-conduction Modeling to Understand the Genesis of the Observed Geothermal Gradient in Ulleung Island using Experimentally Determined Thermal Properties of the Rocks (울릉도 산출 암석의 열물성 자료를 이용한 울릉도 지열 성인에 대한 열전도 수치모델링 연구)

  • Lee, Changyeol;Kim, Kiseog;Yun, Kwanhee
    • Tunnel and Underground Space
    • /
    • v.26 no.4
    • /
    • pp.266-273
    • /
    • 2016
  • We have numerically modeled thermal evolution of Ulleung Island after an emplacement of magma chamber. The disk-shape magma chamber is assumed to locate at 2.9 km beneath the island and has a diameter and a thickness of 10 km and 300 (or 600) m, respectively. The geothermal gradients evaluated from the numerical modeling coincide well with the range of the geotherms (${\sim}95^{\circ}C/km$) observed from the well logging. Although there are limitations in the application of the numerical results directly to the interpretation of the observed geotherms, we believe that an existence of a hot magma chamber in molten or in solidified state is the most plausible explanation for the observed geotherms.

A Study on the Change of Magma Activity from 2002 to 2009 at Mt. Baekdusan using Surface Displacement (지표변위를 활용한 백두산의 2002-2009년 마그마 활동 양상 변화 연구)

  • Yun, Sung-Hyo;Lee, Jeong-Hyun;Chang, Cheolwoo
    • Journal of the Korean earth science society
    • /
    • v.34 no.6
    • /
    • pp.470-478
    • /
    • 2013
  • There have been a number of observed precursors of volcanic activities- such as volcanic earthquake, surface inflation, specific volcanic gas emission, temperature of hot spring- at Mt. Baekdusan since 2002. We identified the increase of the volume of magma chamber beneath Mt. Baekdusan as we observed an inflation trend of vertical and horizontal surface displacement around Cheonji caldera lake by using precise leveling data from 2002 to 2009. The surface displacement trend changed to deflation in 2010, and the trend changed to inflation again after a while. Utilizing the data of inflated surface (46.33 mm) on the northern slope of Mt. Baekdusan from 2002 to 2003, we calculated the volume change of magma chamber beneath the Mt. Baekdusan. The volume change was about 0.008 $km^3$ ($7.7-8.0{\times}10^6m^3$) from 2002 to 2003. It indicated that a new magma (0.008 $km^3$) injected to the magma chamber 5 km below Mt. Baekdusan.

The Study on the Possibility of Using Satellite in Monitoring Precursor of Magma Activity in the Baegdusan Volcano (인공위성을 이용한 백두산 화산 마그마 활동의 전조현상 인지 가능성 연구)

  • Lee, Deok-Su;Choi, Sung-Chan;Oh, Chang-Whan;Seo, Min-Ho;Ryu, In-Chang
    • The Journal of the Petrological Society of Korea
    • /
    • v.22 no.1
    • /
    • pp.35-47
    • /
    • 2013
  • The Baegdusan Volcano which erupted violently at 1000 AD is still have possibility of eruption. Therefore, it is necessary to monitor regularly the possibility of eruption. However, it is very difficult to install regular monitoring system or to get regularly monitored data due to geopolitic problems. This is why we have to develop regular monitoring technique using satellite. The geoid in the Baegdusan Volcanic area calculated from gravity data obtained from GRACE satellite, decreased from 2002 to 2005. The period of decreasing is well matched with time when magma activities were recognized in the Baegdusan Volcanic area. The decrease in geoid is interpreted to be caused by the decrease of water storage. Considering that the amount of rainfall from 2002 and 2005 is almost constant, the decrease in geoid may be related to the magma activity under the Baegdusan Volcano. The geomagnetic total force in the Baegdusan Volcanic area measured by CHAMP satellite, decreased from 2000 to 2005 and increased after 2005. The period of decrease is well matched with the time with increased activity of magma chamber under the Baegdusan Volcano indicating that the decrease of geomagnetic total force is caused by demagnetization of surrounding rocks due to the increase of temperature of magma chamber. These data indicate the possbility of using change of geoid and geomagnetic total force observed by GRACE and CHAMP satellites for the monitoring of magma activity under the Baegdusan Volcano.

General Remarks of Geneses of Tungsten Ore Deposits Based on Tungsten Deposits of China (중국의 중석광상을 근거로한 중석광상 성인 총론)

  • Moon, Kun Joo
    • Economic and Environmental Geology
    • /
    • v.28 no.3
    • /
    • pp.287-303
    • /
    • 1995
  • Tungsten ore deposits in China show clearly their relationship between granitoids and orebodies. All kinds of different tungsten ore deposits, having the largest ore reserves in the world, occur in China. Major tungsten deposits in 1950'years were locally confined in three provinces such as Jiangxi, Hunan and Guangdong. However, the major tungsten ore deposits are replaced by new tungsten deposits such as Sandahozhuang, Xingluokeng, Shizhuan and Daminghsan deposit which may be larger than the previous major deposits. Tungsten ore deposits of China exhibit obviously the granitoid was the ore-bringer to form tungsten ore deposits. The wolframite-bearing quarz veins in China indicate that tungsten mineralization took place by crystallization of wolframite preferentially unless $Ca^{{+}{+}}$ was introduced from outside into the magma-origin-fluid, since it is understood that the scheelite in the Sangdong ore deposit was preferentially precipitated, because of chemical affinity, from the tungsten fluid in which Fe and Ca ions were as sufficient as to form magnetite, wolframite and scheelite. Tungsten deposits in the world are divided into two systems; W-Mo-Sn system and W-Mo system. Most of tungsten deposits in China dated to about 196-116 Ma belong to the W-Mo-Sn system, while late Cretaceous tungsten deposits such as the Sangdong deposit in Korea belongs to the W-Mo system. The genetic order of tin-tungsten-molybdenum mineralization observed in the Moping tungsten mine in China and the Sangdong in Korea may be attributed to volatile pressures in the same magma chamber. It is assumed from ages of tungsten mineralizations that ore elements such as tin, tungsten and molybdenum might be generated periodically by nuclear fission and fusion in a part of the mantle and the element generated was introduced into the magma chamber. The periodical generation of elements had determined association, depletion and enrichment of tin and molybdenum in tungsten mineralization and it results in little association of cassiterite in tungsten deposit of late Cretaceous ages. Different mechanism of emplacement of the ore-bearing magma has brought various genetic types of tungsten deposits as shown in China and the world.

  • PDF

The Wondong magmatic system : its petrochemical evolution (원동 마그마계 : 암석화학적 진화)

  • 황상구
    • The Journal of the Petrological Society of Korea
    • /
    • v.6 no.3
    • /
    • pp.166-184
    • /
    • 1997
  • The Wondong caldea is a deeply eroded structure that offers spectacular exposures through the core and margins of a resurgent caldera. The Wondong Tuff and the postcollapse intrusions range from medium-silica rhyolite to rhyodacite in composition and the postcollapse lava and tuff, preresurgent and resurgent intrusions also range from medium-silica rhyolite to an-desite, which jump to gap dacite composition. The continuous compositional zonations generally define a large stratified magma system in the postcollapse and resurgent magma chamber. Isotopic and trace element evidence suggest that the compositional zonations might have resulted from the differentiations from crystal fractionations of a parental andesitic magma, accompanying a little contamination from the crustal assimilations near the chamber roof and wall. But chemically and isotopically distinct late intusions might have resulted from emplacement of any different magma batch.

  • PDF

Field Evidence of Magma Mixing from Concentric Zoning and Mafic Microgranular Enclaves in Bunam Stock, Korea (청송 부남암주의 동심원상 누대와 포유체로부터 마그마 혼합작용의 야외증거)

  • Hwang, Sang Koo;Seo, Seung Hwan
    • The Journal of the Petrological Society of Korea
    • /
    • v.25 no.4
    • /
    • pp.349-360
    • /
    • 2016
  • The Bunam Stock ($29.5km^2$ area) is an outcrop of plutonic complex classified four facies: coarse-grained granite, quartz monzodiorite, granodiorite and fine-grained granite. Three facies except the last one exhibit very irregular boundaries with gradational compositional variations between both facies and show concentric zoning from the central quartz monzodiorite through granodiorite to outer coarse-grained granite. Mafic microgranular enclaves (MME) commonly occur in granodiorite. Some MMEs, have very fine-grained chilled margins and indentedly crenulate contacts, and display horizontally circular and vertically elongate shapes. Their shape and granularity indicate coeval flow and mingling of partly crystalline felsic and mafic magmas. MMEs exhibit dark fine-grained margins giving them a ellipsoidal form that has been attributed to undercooling of a mafic magma as blobs intruded into a felsic magma. The observed relations in the Bunam Stock identify that two endmembers are coarse-grained granite from a felsic magma and quartz monzodiorite from a mafic magma, and hybrid is granodiorite including MMEs. So they exhibit concentric zoning that lays the center on the mafic endmember due to magma mixing at the contacts of two magmas, when mafic magma injected into felsic magma. Thus the quartz monzodiorite may probably represent an ancient conduit of mafic magma transport through a granitic magma chamber. Mafic magma would rise through the conduit in which favorable conditions for magma mixing occurred. All these features suggest that they formed from mixing processes of calc-alkaline magma in the Bunam Stock.

DC Resistivity Survey Design for Deep Magma in Mt. Baekdu Using Distributed Acquisition System (백두산 심부 마그마 탐사를 위한 분산계측 시스템을 이용한 전기비저항탐사 설계)

  • Lee, Hyosun;Jung, Hyun-Key;Cho, Sung-Ho;Kim, Yesol;Lee, Youn Soo;Min, Dong-Joo
    • Journal of the Korean earth science society
    • /
    • v.40 no.2
    • /
    • pp.177-187
    • /
    • 2019
  • Several volcanic activities have continued in Mt. Baekdu since the Millennium eruption, and these phenomena have increased the need for volcanic activity surveillance. Various geophysical approaches are needed to obtain the depth and size of magma chamber that lie several kilometers below the surface. We examined the applicability of direct-current resistivity survey in this study. In order to explore the deep magma chamber of Mt. Baekdu, which has a spatial limitation due to the borderline, a large-scale survey with a length of tens of kilometers should be conducted. This type of survey requires a distributed measurement system and optimized exploration designs. Therefore, we propose survey designs taking advantage of our developed distributed acquisition system and analyze the applicability using numerical simulation. We confirmed that our designs that use single survey line with offline transmitting points show comparable results to the conventional 3D survey. It is expected that our research result can contribute to the deep geophysical exploration in Mt. Baekdu.

Volcanisms and igneous processes of the Samrangjin caldera, Korea (삼랑진 칼데라의 화산작용과 화성과정)

  • 황상구;김상욱;이윤종
    • The Journal of the Petrological Society of Korea
    • /
    • v.7 no.3
    • /
    • pp.147-160
    • /
    • 1998
  • The Samrangjin Caldera, a trapdoor-type, formed by the voluminous eruption of the silicic ash-flows of the Samrangjin Tuff which is above 630m thick at the northern inside of the caldera and thinnerly 80m at the southern inside. The caldera volcanism eviscerated the magma chamber by a series of explosive eruptions during which silicic magma was ejected to form the Samrangjin Tuff. The explosive eruptions began with phreatoplinian eruption, progressed through small plinian eruption and transmitted with ash-flow eruption. During the ash-flow eruption, contemporaneous collapse of the roof of the chamber resulted in the formation of the Samrangjin caldera, a subcircular depression subsiding above 550m deep. During postcaldera volcanism after the collapse, flow-banded rhyolite was emplaced as cental plug along the central vent and ring dikes along the caldera margins. Subsequently rhyodacite porphyry and dacite porphyry were emplaced along the inner side of the ring dike. After their emplacement, residual magma was emplaced as a hornblende biotite granite stock into the southwestern caldera margin. In the northeastern part, the eastern dikes were cut final intrusions of granodioritic to granitic composition along the fault zone of $^{\circ}$W trend.

  • PDF