• Title/Summary/Keyword: 강성률

Search Result 487, Processing Time 0.032 seconds

Investigation on Failure Behavior of Varying Ratios of Recycled Aggregate (순환골재 치환률에 따른 압축강도 비교분석)

  • Jang, Hoon;Chung, Wonseok;An, Zu-Og
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.160-160
    • /
    • 2011
  • 현대의 건설기술은 자원절약과 환경보전이라는 시대적 흐름 속에, 자원순환과 지속 가능한 친환경 건설기술 개발은 차세대 연구분야로써, 연구가 시급한 분야가 되었다. 최근에는 골재 수급불균형 문제를 해결하고 동시에 자원순환을 위한 방안으로서 건설폐기물로부터 생산된 순환골재를 콘크리트용 천연골재의 대체재로 활용하기 위한 연구개발이 이루어지고 있다. 지속가능형 건설기술을 국내 독자 기술로 확립하고 건설현장에서 발생하는 폐기물의 순환시스템을 확고하게 구축하여 순환자원에 의한 국가경쟁력 강화를 기대할 수 있다. 본 연구의 목적은 순환골재 콘크리트의 역학적 특성을 개선하기 위해 순환골재 콘크리트 공시체를 제작하여 강도 및 강성을 검증하는 것이다. 실험방법으로 순환굵은골재의 치환 비율을 0%에서 100%까지 변화시킨 공시체를 제작하고 각 공시체의 정적 극한강도 거동을 비교 분석하였다. 하중은 공시체가 파괴가 발생 할 때까지 변위제어 방식으로 재하 하였으며 이 때 공시체의 파괴거동은 설치된 계측센서들을 이용하여 계측 및 분석하였다. 실험결과 공시체의 압축강도는 순환굵은골재 치환률이 25% 미만일 경우 일반 콘크리트 압축강도의 95% 이상의 구조성능을 갖지만, 순환굵은골재 치환률이 100%인 경우, 일반콘크리트 압축강도의 85% 수준의 구조성능을 나타냈다. 강성은 FRP 부재의 순환골재 치환률에 따라 최대 14%의 강성차이를 보였다. 이를 통해 순환골재 치환률이 높을수록 순환골재 표면의 폐모르타르와 이물질의 영향으로 재료간의 부착강도가 감소되어 강도와 강성이 저하되었음을 확인하였다.

  • PDF

Anisotropy in Strength and Deformation Properties of a Variety of Sands by Plane Strain Compression Tests(Part II) -Deformation Characteristics at Extremely Small Strain Level (평면변형률압축시험에 의한 각종 모래의 강도.변형특성의 이방성(II)-미소변형률에서의 변형특성 이방성)

  • 박춘식;장정욱
    • Geotechnical Engineering
    • /
    • v.14 no.4
    • /
    • pp.33-46
    • /
    • 1998
  • Anisotropy of stiffness, from extremely small strains to post-failure strains, of isotropically consolidated air-pluviated sands in plane strain compression was studied by using the newly developed instrumentation for small strain measurements. Seven types of sand of the world-wide origins were tested, which have been extensively used for research purposes. Stress-strain at the specimen boundaries. It was found that the maximum Young's modulus $E_{max}$ was irrespective of the angle $\delta$ of the $\delta_1$ direction relative to the bedding plane. However, the normalized$ E_{max}$ was varied with the types of sand. Furthermore, the dependency of the strain and stress level on the stiffness was increased as $\delta$ decreased.

  • PDF

Engineering Properties of Semi-rigid Pavement Material Produced with Sulfur Polymer Emulsion and Reinforcing Fibers (Sulfur Polymer Emulsion 및 보강용 섬유를 활용한 반강성 포장재의 공학적 특성)

  • Lee, Byung-Jae;Seo, Ji-Seok;Noh, Jae-Ho;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.1
    • /
    • pp.119-127
    • /
    • 2014
  • The application of sulfur polymer emulsion (SPE) as an acrylate substitute for semi-rigid pavement grout was evaluated, and the performance improvement by employing PVA fibers were also evaluated. The result indicated that the filling ratio of semi-rigid pavement material decreased as the fiber content increased, but it was measured to be 92~94% in every mixing condition, which satisfies the target performance, 90%. The maximum Marshall stability value of semi-rigid pavement material was measured to be 25.4 kN, which is about 4.7 times higher than the Korean Standard required for semi-rigid pavement material, 5.0 kN. The dynamic stability evaluation of semi-rigid pavement material indicated that the resistance to deformation from the wheel tracking test was improved by an SPE substitution, and in every mixing condition, the deformation converged to a constant value after 45 minutes with the same dynamic stability of 31,500 times/mm. The strain at the flexural failure was about 0.53%, which shows superior rigidity to asphalt pavements. The examination of abrasion resistance and impact resistance showed that the loss ratio was 9.8~6.0% in every mixing condition, which indicates a good abrasion resistance. Also, when fiber content ratio was 0.3%, the impact resistance was 2.82 times higher compared to plain (i.e., when fibers were not added). In the limited range of this study, an SPE substitution ratio of 30% was found to be an optimal level considering the mechanical and durability performance. In addition, it is thought that semi-rigid pavement material with superior performance could be manufactured if fiber content ratio up to 0.3% is applied depending on the purpose of use.

Study of Mechanical Properties and Porosity of Composites by Using Glass Fiber Felt (유리섬유 부직포 사용에 따른 복합재의 기공률 및 물성에의 영향 분석)

  • Lee, Ji-Seok;Yu, Myeong-Hyeon;Kim, Hak-Sung
    • Composites Research
    • /
    • v.35 no.1
    • /
    • pp.42-46
    • /
    • 2022
  • In this study, when the carbon fiber composite was manufactured, the correlation between the porosity and mechanical properties according to the number of glass fiber felts laminated together and the stacking sequence was confirmed. The carbon fiber composite was manufactured by stacking glass fiber felts, which are highly permeable materials, and using vacuum assisted resin transfer molding (VARTM). Porosity was measured by photographing the cross-section of the specimen with an optical microscope and then using porosity calculation code of MATLAB, and mechanical properties were measured for tensile strength, modulus by tensile test. Furthermore, Pearson correlation coefficient between porosity and mechanical properties was calculated to confirm the correlation between two variables. As a result, the number of glass fiber felt increased and the distance from the center of laminated composites increased, the porosity increasing were confirmed. In addition, tensile strength/modulus showed a weak positive correlation with porosity. Also, in order to confirm the effect of only porosity on tensile strength and modulus, mechanical properties calculated by CLPT (Classical Laminate Plate Theory) and experimental values were compared, and the difference in tensile strength showed a strong positive correlation with porosity and the difference in modulus showed a weak positive correlation with porosity.

Model and Method for Post-Failure Analysis of Composite Structure (복합재 구조물의 초기파손후의 거동묘사를 위한 모델과 해석방법)

  • 김용완;황창선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.3
    • /
    • pp.506-513
    • /
    • 1992
  • 본 연구에서는 복합재 구조물에 대하여 유한요소해석법에 현상학적 모델인 전 단지연해석을 도입하여 강성저하와 모재파손을 예측하고 변형률을 매개변수로 한 Wei- bull 함수를 섬유파손해석에 도입하여 초기파손후의 거동을 묘사하고자 한다. 그리 고 면내전단하중이 작용하는 경우에 대해 전단지연해석을 수행할 수 있도록 모델링을 확장했다. 모재균열의 존재로 인한 단층의 강성변화는 실험으로 측정이 불가능하므 로 유한요소해석을 수행하여 비교하였다. 이 모델로부터 전단강성의 저하를 평가하 는 방법을 사용하였으며, 모재파손의 밀도 예측도 평균변형률 개념으로 전단효과를 고 려할 수 있도록 수정하였다. 그리고 초기파손후의 거동을 점진적으로 해석하기 위해 비선형 유한요소프그램을 작성하고, 상기의 모델을 도입하여 초기파손후의 거동을 보 다 정확히 묘사할 수 있는 방법을 제시하고 예로서 평시편에 대해 해석하고 실험치 및 타방법의 결과와 비교하였다.

Comparison of Elastic Modulus Evaluated by Plate Load Test and Soil Stiffness Gauge Considering Strain and Ground Stiffness (변형률 및 지반강성을 고려한 평판재하시험과 흙강성측정기의 탄성계수 비교)

  • Kim, Kyu-Sun;Shin, Donghyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.10
    • /
    • pp.31-40
    • /
    • 2022
  • This study compares elastic moduli calculated using two stiffness testing methods with different strain ranges to evaluate the stress-settlement characteristics of foundation support layers. Elastic moduli were calculated by the soil stiffness gauge (SSG) in the micro-strain range and the plate load test (PLT) in the medium strain range. To apply the elastic moduli obtained by the two testing methods with different strain ranges to the design and construction of foundation soils, the correlation between each measurement value should be identified in advance. As a result of the comparative analysis of the elastic moduli calculated using the two methods in weathered soil and rock, which are representative support layers in Korea, the calculated elastic moduli differed depending on the types of soil and stress conditions. For various soil types, the static elastic modulus obtained by the PLT was reduced by 56% because of the difference in the strain level of the test compared with the dynamic elastic modulus obtained by the SSG. Therefore, the results show that it is necessary to apply corrections to the stress distribution, stress level, and dynamic effect according to the ground stiffness to effectively use the SSG instead of the PLT.

Anisotropy in Strength and Deformation Properties of a Variety of Sands by Plane Strain Compression Tests(Part III) -Shear Deformation Characteristics- (평면변형률압축시험에 의한 각종 모래의 강도.변형특성의 이방성(III) -전단변형 특성-)

  • 박춘식;황성춘;장정욱
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.4
    • /
    • pp.95-105
    • /
    • 2000
  • Anisotropy of stiffiness, from extremely small strains to post-failure strains, of isotropically consolidated air-pulviated sands in plane strain compression was studied by using the newly developed instrumentation for small strain measurements. Seven types of sand of the world-wide origins were tested, which have been extensively used for research purposes. Stress-strain relationships for a wide range of strain from about 0.0001% to 10% were obtained with measuring axial and lateral strains locally free from the effects of bedding and membrane penetration errors at the specimen boundaries. It was found that the maximum shear modulus Gmax was irrespective of the angle $\delta$of the $\sigma$1 direction relative to the bedding plane. However, the normalized Gmax was varied with the types of sand. Furthermore, the dependency of the strain and stress level on the stiffness increased as decreased.

  • PDF

Evaluation of Functional and Structural Performance of Semi Rigid Overlay Pavements (반강성 덧씌우기 포장의 기능적 및 구조적 성능 평가)

  • Park, Kang Yong;Lee, Jae Jun;Kwon, Soo Ahn;Jeong, Jin Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3D
    • /
    • pp.271-278
    • /
    • 2010
  • Semi rigid pavement is a pavement type using advantages of both flexibility of asphalt pavement and rigidity of concrete pavement by infiltrating cement paste into voids of open graded asphalt mixtures. The semi rigid pavement has better smoothness and smaller driving vibration or noise comparing to the concrete pavement, and has smaller permanent deformation and has temperature falling effect comparing to the asphalt pavement. The temperature falling effect were investigated at a semi rigid overlay pavement test section, and the temperature falling and water retaining effects were verified by measuring the temperature and weight of specimens at a housetop. Horizontal and vertical stresses and strains were compared by structural analysis of the semi rigid pavement and asphalt pavement using the Abaquser o, a commercial 3D finite element analysis program. The results were verified by Bisar 3.0, a multi-layered elastic analysis program. Performance of the semi rigid pavement and asphalt pavement were compared by predicting fatigue cracking based on the structural analysis results.

Stiffness Degradation during Deep Excavation in Urban Area (도심지 깊은 굴착에 따른 지반 강성의 변화)

  • Choi, Jongho;Koo, Bonwhee;Kim, Taesik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.2
    • /
    • pp.27-31
    • /
    • 2015
  • In urban area, many design projects related to geotechnical projects are controlled by serviceability rather than stability requirements. Accordingly, control of ground deformation has become more crucial and many researchers have studied soil stiffness. Recent experimental studies on the stress-strain response of Chicago glacial clays showed that the nonlinearity and anisotropy are the two key factors in evaluating the soil stiffness. In this study, experimental results are applied to analyze the deep excavation site locating in downtown Chicago. The stress paths observed from the observation points located behind and front of the supporting wall yield typical stress paths. Changes in soil stiffness nonlinearity and anisotropy were discussed by comparing experimental and computed stress paths. The stiffness anisotropy were significant even at the first few excavations. The stiffness degradation characteristics are significantly different according to relative location to the support wall even at the same elevation.

Stiffness analysis of leaf type holddown spring assemblies (판형 홀드다운 스프링 집합체의 강성해석)

  • 송기남;임현태
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.1
    • /
    • pp.215-222
    • /
    • 1993
  • A general method is proposed for stiffness analysis of the leaf springs only using the geometric data and Young's modulus of the leaf springs. In this method, an engineering beam theory and Castigliano's theory are applied for the derivation of the stiffness of the leaf springs. To show realiability and effectiveness of this method, the stiffness from the proposed method is compared with the results for various types of leaf springs. From these comparisons the proposed method has been proved to be effective and reliable to estimate the stiffness of the leaf springs.