직사각형 격자체계에서의 원호형 내부조파

Internal Generation of Waves on an Arc In A Rectangular Grid System

  • 이창훈 (세종대학교 토목환경공학과) ;
  • 최혁진 ((주)대영엔지니어링 기술연구소) ;
  • 김덕구 ((주)혜인E&C 기술연구소)
  • 발행 : 2006.03.01

초록

본 논문에서 직사각형 격자 체계에서 원호형 내부조파에 의한 선 조파기법을 개발하였다. 총 다섯 가지 조파형식의 수치실험이 다음의 조건에 수행되었다. 즉, 일정수심에서의 파랑의 전파, 일정경사를 가지는 평면에서의 굴절과 천수, 반무한 방파제에서 회절 실험을 수행하였다. 수치실험 수행 시 기본방정식으로 Suh et al. (1997)이 제안한 확장형 완경사방정식을 이용하였다. 두 개의 평행한 직선이 반원으로 연결된 제5형식 조파기법을 사용하면 가장 우수한 결과를 얻을 수 있었다. 특히, 격자간격이 작은 경우에 그 우수성이 확연히 드러났다.

This paper presents the techniques developed using the line source method to internally generate waves on an arc in a rectangular grid system. For five different types of wave generation layouts, quantitative experiments were conducted under the following conditions: the propagation of waves on a flat bottom, the refraction and shoaling of waves on a planar slope, and the diffraction of waves to a semi-infinite breakwater. Numerical experiments were conducted using the extended mild-slope equations of Suh et al. (1997). The fifth type of wave generation layout, consisting of two parallel lines connected to a semicircle, showed the best solutions, especially for a small grid size.

키워드

참고문헌

  1. Kim, G., Lee, C. and Suh, K.D. (2004). Generation of incident random waves in numerical mild-slope equation models using a source function method. Proceedings of 2nd Int. Conf. on Asian and Pacific Coasts, Makuhari
  2. Kirby, J.T., Lee, C. and Rasmussen, C. (1992). Time-dependent solutions of the mild-slope wave equation. Proceedings of 23rd Int. Conf. on Coastal Eng., Venice, 391-404
  3. Larsen, J. and Dancy, H. (1983). Open boundaries in short wave simulations - a new approach. Coastal Eng., 7, 285-297 https://doi.org/10.1016/0378-3839(83)90022-4
  4. Lee, C., Cho, Y.-S. and Yum, K. (2001). Internal generation of waves for extended Boussinesq equations. Coastal Eng., 42, 155-162 https://doi.org/10.1016/S0378-3839(00)00056-9
  5. Lee, C., Kim, G. and Suh, K.D. (2003). Extended mild-slope equation for random waves. Coastal Eng., 48, 277-287 https://doi.org/10.1016/S0378-3839(03)00033-4
  6. Lee, C. and Suh, K.D. (1998). Internal generation of waves for time-dependent mild-slope equations. Coastal Eng., 34, 35-57 https://doi.org/10.1016/S0378-3839(98)00012-X
  7. Madsen, P.A. and Larsen, J. (1987). An efficient finite-difference approach to the mild-slope equation. Coastal Eng., 11, 329-351 https://doi.org/10.1016/0378-3839(87)90032-9
  8. Nwogu, O. (1993). Alternative form of Boussinesq equations for nearshore wave propagation. J. of Waterway, Port, Coastal and Ocean Eng., 119, 618-638 https://doi.org/10.1061/(ASCE)0733-950X(1993)119:6(618)
  9. Penney, W.G. and Price, A.T. (1952). The diffraction theory of sea waves by breakwaters and the shelter afforded by breakwaters. Phil. Trans. of Royal Society of London, Series A, 244, 236-253 https://doi.org/10.1098/rsta.1952.0003
  10. Peregrine, D.H. (1967). Long waves on a beach. J. Fluid Mech., 27, 815-827 https://doi.org/10.1017/S0022112067002605
  11. Radder, A.C. and Dingemans, M.W. (1985). Canonical equations for almost periodic, weakly nonlinear gravity waves. Wave Motion, 7, 473-485 https://doi.org/10.1016/0165-2125(85)90021-6
  12. Sommerfeld, A. (1896). Mathematische theorie der diffraction. Mathematische Annalen, 47, 317-374 https://doi.org/10.1007/BF01447273
  13. Suh, K.D., Lee, C. and Park, W.S. (1997). Time-dependent equations for wave propagation on rapidly varying topography. Coastal Eng., 32, 91-117 https://doi.org/10.1016/S0378-3839(97)81745-0
  14. Wei, G, Kirby, J.T. and Sinha, A. (1999). Generation of waves in Boussinesq models using a source function method Coastal Eng., 36, 271-299 https://doi.org/10.1016/S0378-3839(99)00009-5