The mathematical proofs of refraction law and its didactical significances

굴절의 법칙의 수학적 증명과 그 교수학적 의의

  • 강흥규 (공주교육대학교 수학교육과)
  • Published : 2006.02.01

Abstract

The law of refraction, which is called Snell's law in physics, has a significant meaning in mathematics history. After Snell empirically discovered the refraction law $\frac{v_1}{sin{\theta}_1}=\frac{v_2}{sin{\theta}_2$ through countless observations, many mathematicians endeavored to deduce it from the least time principle, and the need to surmount these difficulties was one of the driving forces behind the early development of calculus by Leibniz. Fermat solved it far advance of others by inventing a method that eventually led to the differential calculus. Historically, mathematics has developed in close connection with physics. Physics needs mathematics as an auxiliary discipline, but physics can also belong to the lived-through reality from which mathematics is provided with subject matters and suggestions. The refraction law is a suggestive example of interrelations between mathematical and physical theories. Freudenthal said that a purpose of mathematics education is to learn how to apply mathematics as well as to learn ready-made mathematics. I think that the refraction law could be a relevant content for this purpose. It is pedagogically sound to start in high school with a quasi-empirical approach to refraction. In college, mathematics and physics majors can study diverse mathematical proof including Fermat's original method in the context of discussing the phenomenon of refraction of light. This would be a ideal environment for such pursuit.

물리학에서 Snell의 법칙으로 불리는 굴절의 법칙은 수학사적으로 매우 중요한 의미를 가진다. Snell이 많은 관찰 자료를 바탕으로 굴절의 법칙 $\frac{v_1}{sin{\theta}_1}=\frac{v_2}{sin{\theta}_2$를 발견한 이후 많은 수학자들은 '최소 시간의 원리'를 사용하여 이 식을 수학적으로 증명하려 시도하였으며 이러한 노력은 미분의 발명을 촉진한 주요한 동력 중의 하나였다. format는 자신만의 방법을 개발하여 이 문제를 최초로 해결하였으며, 이때 Format가 사용한 극대$cdot$극소 방법은 현대의 미분을 통한 방법과 유사한 것으로 이후 Leibniz의 무한소 방법의 기원이 되었다. 역사적으로 수학과 물리학은 밀접하게 상호작용하면서 과학의 발전을 이끌었다. 굴절의 법칙은 이러한 수학과 물리학의 관계를 잘 보여준다. 물리학은 수학에 질문을 제기하고 수학은 보편적인 원리로 그것을 해결함으로써 처음의 현상보다 더 넓은 현상까지 포괄적으로 설명한다. 수학교육의 목적은 완성된 수학을 배우는 것뿐만 아니라 수학을 응용할 줄 아는 능력이라는 Freudenthal의 말을 생각할 때, 굴절의 법칙은 고등학교의 우수한 학생이나 대학의 수학 교육과정에 적합한 소재이다. 대학의 수학이나 물리학 전공과정에서는, 미분을 통한 현대적인 방법뿐만 아니라 format의 방법(미분을 명시적으로 사용하지는 않았지만 원시적인 미분의 방법을 쓰고 있는)을 동시에 다루면서 양자를 비교하는 기회를 가지는 것은 교육적으로 가치 있는 일이라 생각된다.