스테인리스 스틸 촉매 상에서 아세틸렌 분해에 의한 VGCF 나노물질의 성장 형태 연구 - 환원 전처리 및 수소공급 효과

A Study on the Growth Morphology of VGCF Nano-Materials by Acetylene Pyrolysis over Stainless Steel Catalyst - Effect of Reduction Pretreatment and Hydrogen Supply

  • 박석주 (한국에너지기술연구원 청정시스템연구센터) ;
  • 이동근 (충남대학교 기계공학과)
  • Park, Seok Joo (Clean Energy System Research Center, Korea Institute of Energy Research) ;
  • Lee, Dong Geun (Department of Mechanical Engineering, Chungnam National University)
  • 투고 : 2006.05.26
  • 심사 : 2006.09.19
  • 발행 : 2006.12.31

초록

스테인리스 스틸 메쉬 표면을 환원 전처리하여 그 표면상에 직접 탄소나노튜브 또는 탄소나노섬유와 같은 VGCF (vapor grown carbon fiber) 나노물질을 합성 성장시켰다. 수소 가스를 이용하여 스테인리스 스틸 메쉬를 환원 처리함으로써, 금속 표면상에 bi-modal 분포의 작은 촉매입자와 큰 촉매입자들이 함께 생성되었다. 환원된 스테인리스 스틸 메쉬로부터 VGCF의 합성 시, 수소 가스가 공급되지 않은 경우는 작은 촉매입자로부터 탄소나노튜브들이 주로 성장되었으나, 특정 량의 수소 가스가 공급될 경우 큰 촉매입자로부터 탄소나노섬유들이 주로 성장되었다.

Vapor grown carbon fiber (VGCF) nano-materials such as carbon nanotubes and carbon nanofibers were directly grown on the surface of the stainless steel mesh pre-treated by reduction. The reduction of the stainless steel mesh by hydrogen formed small catalytic particles and large particles with bi-modal distribution on the metal surface. When the VGCFs were synthesized on the reduced mesh, carbon nanotubes (CNTs) were dominantly grown from the small catalytic particles without supplying hydrogen gas. However, carbon nanofibers (CNFs) were dominantly grown from the large catalytic particles with hydrogen.

키워드

참고문헌

  1. Thostenson, E. T., Ren, Z. and Chou, T.-W., 'Advances in the Science and Technology of Carbon Nanotubes and Their Composites: A Reivew,' Composites Sci. Technol., 61(13), 1899-1912 (2001) https://doi.org/10.1016/S0266-3538(01)00094-X
  2. Lu, W. and Chung, D. D. L., 'Anodic Performance of Vapor Derived Carbon Filaments in Lithium-Ion Secondary Battery,' Carbon, 39(4), 493-496(2001) https://doi.org/10.1016/S0008-6223(00)00157-3
  3. Park, C., Engel, E. S., Crowe, A., Gilbert, T. R. and Rodriguez, N. M., 'Use of Carbon Nanofibers in the Removal of Organic Solvents from Water,' Langmuir, 16(21), 8050-8056(2000) https://doi.org/10.1021/la9916068
  4. Shaffer, M. S. P., Fan, X. and Windle, A. H., 'Dispersion and Packing of Carbon Nanotubes,' Carbon, 36(11), 1603-1612(1998) https://doi.org/10.1016/S0008-6223(98)00130-4
  5. Biro, L. P., Bernado, C. A., Tibbets, G. G. and Lambin, Ph., 'Carbon Filaments and Nanotubes: Common Origins. Differing Applications-,' Nato Sci. Ser. Ser. E: Appl. Sci., 372, 85-ff(2001)
  6. An, K. H., Kim, W. S., Park, Y. S., Moon, J.-M., Bae, D. J., Lim, S. C., Lee, Y. S. and Lee, Y. H., 'Electrochemical Properties of High-Power Supercapacitors Using Single-Walled Carbon Nanotubes Electrodes,' Adv. Funct. Mater., 11(5), 387-392(2001) https://doi.org/10.1002/1616-3028(200110)11:5<387::AID-ADFM387>3.0.CO;2-G
  7. Johnson, D. F., Craft, B. J. and Jaffe, S. M., 'Adhered Supported Carbon Nanotubes,' J. Nanopart. Res., 3(1), 63-71(2001) https://doi.org/10.1023/A:1011419628735
  8. Vander Wal, R. L. and Hall, L. J., 'Carbon Nanotube Synthesis upon Stainless Steel Meshes,' Carbon, 41(4), 659-672(2003) https://doi.org/10.1016/S0008-6223(02)00369-X
  9. Pan, C., Liu, Y., Cao, F., Wang, J. and Ren, Y., 'Synthesis and Growth Mechanism of Carbon Nanotubes and Nanofibers from Ethanol Flames,'Micron, 35(6), 461-468(2004) https://doi.org/10.1016/j.micron.2004.01.009