• Title/Summary/Keyword: Catalytically Grown Carbon

Search Result 5, Processing Time 0.021 seconds

A Study on the Growth Morphology of VGCF Nano-Materials by Acetylene Pyrolysis over Stainless Steel Catalyst - Effect of Reduction Pretreatment and Hydrogen Supply (스테인리스 스틸 촉매 상에서 아세틸렌 분해에 의한 VGCF 나노물질의 성장 형태 연구 - 환원 전처리 및 수소공급 효과)

  • Park, Seok Joo;Lee, Dong Geun
    • Korean Chemical Engineering Research
    • /
    • v.44 no.6
    • /
    • pp.563-571
    • /
    • 2006
  • Vapor grown carbon fiber (VGCF) nano-materials such as carbon nanotubes and carbon nanofibers were directly grown on the surface of the stainless steel mesh pre-treated by reduction. The reduction of the stainless steel mesh by hydrogen formed small catalytic particles and large particles with bi-modal distribution on the metal surface. When the VGCFs were synthesized on the reduced mesh, carbon nanotubes (CNTs) were dominantly grown from the small catalytic particles without supplying hydrogen gas. However, carbon nanofibers (CNFs) were dominantly grown from the large catalytic particles with hydrogen.

Characterization of Nanostructure and Electronic Properties of Catalytically Grown Carbon Nanofiber (촉매법으로 제조한 나노탄소섬유의 미세구조 및 전기적 특성 제어 연구)

  • 김명수;우원준;송희석;임연수;이재춘
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.4
    • /
    • pp.345-353
    • /
    • 2000
  • Carbon nanofibers were prepared from the decomposition of various carbon-containing gases over pure Ni, pure Fe and their alloys with Cu. They yields, properties, and structure of carbon nanofibers obtained from the various reaction conditions were analyzed. Type of reacting gas, reaction temperature and catalyst composition were changed as the reaction variable. With Ni-Cu catalysts, the maximum yields of carbon nanofibers were obtained at temperatures between 550 and 650$^{\circ}C$ according to the reacting gas mixtures of C2H2-H2, C2H4-H2 and C3H8-H2, and the surface areas of the carbon nanofibers produced were 20∼350㎡/g. In the case of CO-H2 mixture, the rapid deposition of carbon nanofibers occurred with Fe-Cu catalyst and the maximum yield were obtained around 550$^{\circ}C$ with the range of surface areas of 140∼170㎡/g. The electrical resistivity of carbon nanofiber regarded as the key property of filler for the application of electromagnetic interference shielding was very sensitive to the type of reactant gas and the catalyst composition ranging 0.07∼1.5Ωcm at a pressure of 10000 psi, and the resistivity of carbon nanofibers produced over pure nickel catalyst were lower than those over alloy catalysts. SEM observation showed that the carbon nanofibers produced had the diameters ranging 20∼300 nm and the straight structure of carbon nanofibers changed into the twisted or helical conformation by the variation of reacting gas and catalyst composition.

  • PDF

Characteristics of the Catalysts Using Activated Carbon Nanofibers with KOH as the Support of Anode Catalyst for Direct Methanol Fuel Cell

  • Jung, Min-Kyung;Kim, Sang-Kyung;Jung, Doo-Hwan;Peck, Dong-Hyun;Shin, Jung-Hee;Shul, Yong-Gun;Yoon, Seong-Ho
    • Carbon letters
    • /
    • v.8 no.1
    • /
    • pp.37-42
    • /
    • 2007
  • Carbon nanofiber (CNF) grown catalytically was chemically activated with KOH to attain structural change of CNF. The structural changes of CNF through KOH activation were investigated by using BET and SEM. From the results of BET, it was found that KOH activation was effective to develop particular sizes of pores on the CNF surface, increasing the surface area of CNF. Activated CNF was applied as an anode catalyst support of fuel cell. The effects of different activation conditions including the activation temperature and the activation time on the specific surface area of the CNF activated with KOH were investigated to obtain appropriate structure as a catalyst support. The 60 wt% Pt-Ru catalyst prepared was observed by using TEM and XRD.

Synthesis of TiO2 Nanowires by Metallorganic Chemical Vapor Deposition (유기금속 화학기상증착법을 이용한 TiO2 나노선 제조)

  • Heo, Hun-Hoe;Nguyen, Thi Quynh Hoa;Lim, Jae-Kyun;Kim, Gil-Moo;Kim, Eui-Tae
    • Korean Journal of Materials Research
    • /
    • v.20 no.12
    • /
    • pp.686-690
    • /
    • 2010
  • $TiO_2$ nanowires were self-catalytically synthesized on bare Si(100) substrates using metallorganic chemical vapor deposition. The nanowire formation was critically affected by growth temperature. The $TiO_2$ nanowires were grown at a high density on Si(100) at $510^{\circ}C$, which is near the complete decomposition temperature ($527^{\circ}C$) of the Ti precursor $(Ti(O-iPr)_2(dpm)_2)$. At $470^{\circ}C$, only very thin (< $0.1{\mu}m$) $TiO_2$ film was formed because the Ti precursor was not completely decomposed. When growth temperature was increased to $550^{\circ}C$ and $670^{\circ}C$, the nanowire formation was also significantly suppressed. A vaporsolid (V-S) growth mechanism excluding a liquid phase appeared to control the nanowire formation. The $TiO_2$ nanowire growth seemed to be activated by carbon, which was supplied by decomposition of the Ti precursor. The $TiO_2$ nanowire density was increased with increased growth pressure in the range of 1.2 to 10 torr. In addition, the nanowire formation was enhanced by using Au and Pt catalysts, which seem to act as catalysts for oxidation. The nanowires consisted of well-aligned ~20-30 nm size rutile and anatase nanocrystallines. This MOCVD synthesis technique is unique and efficient to self-catalytically grow $TiO_2$ nanowires, which hold significant promise for various photocatalysis and solar cell applications.

Properties of Acetyl-CoA Synthetase from Pseudomonas fluorescens

  • Kim, Yu-Sam;An, Jae-Hyung;Yang, Bu-Hyun;Kim, Kyu-Wan
    • BMB Reports
    • /
    • v.29 no.4
    • /
    • pp.277-285
    • /
    • 1996
  • In Pseudomonas fluorescens grown on malonate as sole carbon source, acetyl-CoA synthetase was induced, suggesting that malonate is metabolized through acetate and then acetyl-CoA. Acetyl-CoA synthetase was purified 18.6-fold in 4 steps to apparent homogeneity. The native molecular mass of the enzyme estimated by a native acrylamide gel electrophoresis was 130 kDa. The enzyme was composed of two identical subunits with a molecular mass of 67 kDa. Optimum pH was 70. The acetyl-CoA synthetase showed typical Michaelis-Menten kinetics for the substrates, acetate, ATP and CoA, whose $K_m$ values were calculated to be 33.4, 74.8, and 40.7 mM respectively. Propionate. butyrate and pentanoate were also used as substrates by the enzyme, but the rate of the formation of the CoA derivatives was decreased in the order of the increase in carbon number. The enzyme was inhibited by the group-specific reagents diethylpyro-carbonate, 2,3-butanedione, pyridoxal-5'-phosphate and N-bromosuccinimide. In the presence of substrates the inactivation rate of the enzyme, by all of the group-specific reagents mentioned above decreased, indicating the presence of catalytically essential histidine, arginine, lysine and tryptophan residues at or near the active site. Preincubation of the enzyme with ATP, $Mg^{2+}$ resulted in the increase of its susceptibility to diethylpyrocarbonate, suggesting that ATP, $Mg^{2+}$ may induce a conformational change in the active site exposing the essential histidine residue to diethylpyrocarbonate. The enzyme was acetylated in the presence of acetyl-CoA, indicating that this is one of acyl-enzyme.

  • PDF