D-Alaninepeptidase에 의한 세균의 삼투압 및 항생제에 대한 취약성 증가

D-Alaninepeptidase Increases the Vulnerability of Bacterial Cells to Osmotic Stress and Antibiotics

  • 송진수 (충북대학교 자연과학대학 생명과학부) ;
  • 이영남 (충북대학교 바이오연구소)
  • Song, Jin-Sue (Division of Life Sciences, Collegeof Natural Sciences, Chungbuk National University) ;
  • Lee, Young-Nam (Biotechnology Research Institute, Chungbuk National University)
  • 발행 : 2006.12.30

초록

삼투압 환경에서 D-alaninepeptidase가 세균의 생존에 미치는 영향을 D-alaninepeptidase에 노출시킨 세균의 생존율로 살려본 바, 균을 D-alaninepeptidase와 삼투압에 동시에 노출시켰을 때, 균의 생존율이 대조군에 비하여 현저히 감소되었는데, 그람 양성 구균보다 그람 음성 간균의 생존감소율이 더욱 컸다. D-Alaninepeptidase와 높은 삼투압 환경에 노출시킨 균의 경우, 삼투압에만 노출시킨 대조군에 비하여 균체의 와해 또는 손상을 받은 비정형적 균의 수가 많이 증가했음을 주사전자현미경으로 관찰하였다. D-Alaninepeptidase와 항생제에 동시에 노출시킨 세균들(항생제 내성 균주 포함)의 항생제(gentamycin, vancomycin, kanamycin)에 대한 감수성을 원판확산법으로 살펴본바 D-alaninepeptidase에 노출시킨 세균들의 항생제 감수성이 증가하는 추세였는데 Proteus vulgaris 균주들의 vancomycin에 대한 감수성 증가는 괄목할 만하였다. 따라서 D-alaninepeptidase에 의하여 세균벽이 취약해져 삼투압이나 항생제 같은 외적 환경에 균이 민감해지는 것으로 사료된다.

D-Alaninepeptidase purified from Bacillus amyloliquefaciene CMB01 caused a reduction of survival of Proteus vulgaris, Klebsiella oxytoca, and Staphylococcus aureus placed under the osmotic pressure. D-Alaninepeptidase caused an increase of susceptibility of bacteria to antibiotics. An increased number of malformed cells in bacterial groups exposed to D-alaninepeptidase was observed by scanning electron microscopy. These data suggested that bacterial cells exposed to D-alaninepeptidase resulted in an increase of vulnerability of bacterial cells toward environmental stress, such as osmotic pressure and antibiotic substances.

키워드

참고문헌

  1. 이동석. 2005. 필수임상미생물학, p. 32-35, 라이프사이언스, 서울
  2. 윤은정, 윤종민, 최성숙, 권애란, 심미자, 최응칠. 2006. 임상분리 그람 양성 구균에 대한 MLS계 항생물질의 내성. 약학회지 50, 204-207
  3. 윤은정, 김현지, 권애란, 최성숙, 심미자, 최응칠. 2006. 안개형 저지원을 갖는 MLS 내성 황색포도상 구균의 내성 기전. 약학회지 50, 199-203
  4. 임상수, 김미광, 민정범, 김민정, 박순낭, 황호길, 국중기. 2006. 감염근관에서 분리 배양한 세균의 수종 항생제에 대한 감수성 조사. 미생물학회지 42, 185-194
  5. Amsterdam, D. 1992. Susceptibility. p. 161-163. In J. Lederberg(ed.), Encyclopedia of Microbiology. Vol. 4. Academic Press, Tokyo, Japan
  6. Asano, Y., A. Nakazawa, Y. Kato, and K. Kondo. 1989. Properties of a noble D-stereospecific aminopeptidase from Ochrobactrum anthropi. J. Biol. Chem. 264, 14233-14239
  7. Asano, Y., Y. Kato, A. Yamada, and K. Kondo. 1992. Structural similarity of D-aminopeptidase to carboxypeptidase DD and $\beta$-lactamases. Biochemistry 31, 2316-2328 https://doi.org/10.1021/bi00123a016
  8. Asano, Y., H. Ito, T. Dairi, and Y. Kato. 1996. An alkaline D-stereospecific endopeptidase with D-lactamases activity from Bacillus cereus. J. Biol. Chem. 271, 30256-30262 https://doi.org/10.1074/jbc.271.47.30256
  9. Babic, M., A.M. Hujer, and R. Bonomo. 2006. What's new in antibiotic resistance? Focus on $\beta$-lactamase. Drug resist. Updates 9, 142-156 https://doi.org/10.1016/j.drup.2006.05.005
  10. Baek, D.H., S.J. Kwon, J.S. Park, S.G. Lee, n. Mheen, and M.H. Sung. 1999. Discovery of D-stereospecific dipeptidase from thermophilic Bacillus sp. BCS-l and its application for synthesis of Damino acid containing peptide. J. Microbiol. Biotechnol. 9, 646-649
  11. Baglan, P., H.G. Bozdayi, M. Ozkan, K. Ahmed, A.M. Bozdayi, and A. Ozden. 2006. Clarithromycin resistance prevalence and Icea Gene status in Helicobacter pyroli clinical isolates in Turkish patients with duodenal ulcer and functional dyspepsia. J. Microbiol. 44, 409-416
  12. Bambeke, F., M. Chauvel, P.E. Reynolds, H.Y. Fraimow, and P. Courvalin. 1999. Vancomycin-dependent Enterococcus faecalis clinical isolates and revertant mutants. Antimicrob. Agents Chemother. 43, 41-47 https://doi.org/10.1093/jac/43.suppl_1.41
  13. Ban. O.-H., S.-S. Han, and Y.N. Lee. 2003. Identification of a potent protease producing bacterial isolate, Bacillus amyloliquefaciens CMB01. Ann. Microbiol. 53, 95-103
  14. Baron, E.J., R.S. Chang, D.H. Howard, J.N. Miller, and J.A. Turner. 1993. Medical Microbiology. A short course, p. 397-399, Wiley-Liss. New York, USA
  15. Dmitriev, B., E.V. Toukach, O. Holst, E.T. Rietchel, and S. Ehlers. 2004. Tertiary structure of Staphylococcus aureus cell wall murein. J. Bacteriol. 186, 7141-7148 https://doi.org/10.1128/JB.186.21.7141-7148.2004
  16. Dmitriev, B., F. Toukach, and S. Ehlers. 2005. Towards a comprehensive view of the Bacteriol cell wall. Trends Microbiol. 13, 569-574 https://doi.org/10.1016/j.tim.2005.10.001
  17. El-Naggar, M.Y., S.A. El-Assar, and S.M. Abdul-Gawad. 2006. Meroparamycin production by newly isolated Streptomyces sp. strain MAR01: taxonomy, fermentation, purification and structural elucidation. J. Microbiol. 44, 432-438
  18. Fanuel, L., I. Thamm, V. Kostanjevecki, B. Joris, C. Goffin, J. Brannigan, J. van Beeumen, and J.M. Frere. 1999. Two new aminopeptidase from Ochrobactrum anthropi active on D-alanly-pnitroanilide. Cell Mol. Life. Sci. 55, 812-818 https://doi.org/10.1007/s000180050334
  19. Fathalla, O.A., S.M. Awad, and M.S. Mohamed. 2005. Synthesis of new 2-thiouracil-5-sulphonamide derivatives with antiBacteriol and antifungal activity. Arch. Pharm. Res. 28, 1205-1212 https://doi.org/10.1007/BF02978199
  20. Fraise, A.P. 2006. Tiecycline: The answer to beta-lactam and fluoroquinolone resistance? J. Infec. 53, 293-300 https://doi.org/10.1016/j.jinf.2006.05.014
  21. Gill, M.J., N.P. Brenwald, and R. Wise. 1999. Identification of an efflux pump gene, pmrA, associated with tluoroquinolone resistance in Streptococcus pnuernoniae. Antimicrob. Agents Chemother. 43, 187-189 https://doi.org/10.1093/jac/43.2.187
  22. Harold, J.B. 1985. AntiMicrobiol sensitivity testing, p. 138-144. In Microbiological Applications. Wm. C. Brown Publishers, New York, USA
  23. Hasegawa, T., M. Kakushima, M. Hatori, S. Aburaki, S. Kakimura, T. Furumai, and T. Oki. 1993. Pradimicins T1 and T2, New antifungal antibiotics produced by an Actinomyces II. Structure and biosynthesis. J. Antibiotics (Tokyo) 46, 598-605 https://doi.org/10.7164/antibiotics.46.598
  24. Hedge, V., M. Patel, A. Horan, V. Gullo, and J. Marquez. 1992. Macrolactams: A novel class of antifungal antibiotics produced by Actinomadura spp. J. Antibiotics (Tokyo) 45, 624-632 https://doi.org/10.7164/antibiotics.45.624
  25. Hoban, D.J., S.K. Bouchillon, J.L. Johnson, G.G. Zhanel, D.L. Bulter, K.A. Saunders, L.A. Miller, J.A. Poupard, and the Surveillance Study Research Group. 2003. Comparative in vitro potency of amoxycillin-clavulanic acid and four oral agents against North American clinical isolates from a global surveillance study. Int. J. Antimicrob. Agents 21, 425-433 https://doi.org/10.1016/S0924-8579(03)00038-4
  26. Holtje, J.-V. 1998. Growth of the stress bearing and shape maintaining murein sacchulus of Escherichia coli. Microbiol. Mol. Biol. Rev. 62, 181-203
  27. Johnson, D.M., M.G. Stilwell, T.R. Fritsche, and R.J. Jones. 2006. Emergence of multidrug-resistnat Streptococcus pneumoniae: report from the SENTRY antiMicrobiol surveillance Program(1999-2003). Diagnostic Microbiol. Infect. Dis. 56, 69-74 https://doi.org/10.1016/j.diagmicrobio.2005.12.008
  28. Kim, B.S. and B.K. Hwang. 1993. Production, purification and antifungal activity of antibiotic substances produced by Pseudomonas aeruginosa strain B5. Kor. J. Appl. Microbiol. Biotechnol. 3, 12-18
  29. Knapp, J.S., J.M. Zenilman, J.W. Biddle, G.H. Perkins, W.E. DeWitt, M.L. Thomas, S.R. Johnson, and S.A. Morse. 1987. Frequency and distribution in the United States of strains of Neisseriae gonorrhoeae with plasmid mediated, high level resistance to tetracycline. J. Infect. Dis. 155, 819-822 https://doi.org/10.1093/infdis/155.4.819
  30. Madigan, M.T., J.M. Martinko, and J. Packer. 2003. Brock's Biology of Microorganims (10th), p. 75-79, Prentice Hall, Upper Saddle River, NJ, USA
  31. Mine, T., Y. Morita, A. Kataoka, T. Mizushima, and T. Tsuchiya. 1999. Expression in Escherichia coli of a new multidrug efflux pump MexXY, from Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 43, 415-417 https://doi.org/10.1093/jac/43.3.415
  32. Omura, S. 1992. The Search for bioactive compounds from microorganisms. Springer-Verlag, Tokyo, Japan
  33. Ormerod, L.P., J.M. Harrison, and P.A. Wright. 1990. Drug resistance trend in Mycobacterium tuberculosis: Blackburn 1985-89. Tubercle 71, 283 https://doi.org/10.1016/0041-3879(90)90042-7
  34. Paulsen, I.T., M.H. Brown, and R.A. Skurray. 1996. Proton-dependent multidrug efflux systems. Microbiol. Rev. 60, 575-608
  35. Rajasekaran, A., S. Murugesan, and K. Anandarajagopal. 2006. AntiBacteriol, antifungal and anticovulsant evaluation of novel newly synthesized 1-[2-(1H-tetrazol-5-yl)ethyl]-1H-benzo[d][1,2,3]triazoles. Arch. Pharm. Res. 29, 535-540 https://doi.org/10.1007/BF02969261
  36. Rao, M.B., A.M. Tanksale, M.S. Ghatge, and V.V. Deshpande. 1998. Molecular and biotechnological aspects of Microbiol protease. Microbiol. Mol. Biol. Rev. 62, 597-635
  37. Selwyn, Q., T. Imai, Y. Mikaml, K. Yazawa, E.R. Dabbs, N. Morisaki, S. Iwasaki, Y. Hashimoro, and K. Furihata. 1999. ADP-ribosylation as an intermediate step in inactivation of rifampin by a Mycobacterial gene. Antimicrob. Agents Chemother. 43, 181-184
  38. Sieradzki, K. and A. Tomasz. 2003. Alterations of cell wall structure and metabolism accompany reduced susceptibility to vancomycin in an isogenic series of clinical isolates of Staphylococcus aureus. J. Bacteriol. 185, 103-7110
  39. Silver, L.L. and K.A. Bostian. 1993. Discovery and development of new antibiotics: the problem of antibiotic resistance. Antimicrob. Agents Chemother. 37, 377-383 https://doi.org/10.1128/AAC.37.3.377
  40. Sin, E., H.-G. Hong, Y. Ike, K. Lee, Y.H. Park, D.T. Lee, and Y. Lee. 2006. VanB-VanA incongruent VRE isolated from animals and humans in 1999. J. Microbiol. 44, 453-456
  41. Song, J.S. and Y.N. Lee. 2002. Purification and characterization of D-alaninepepdidase from Bacillus amyloliquefaciens CMB01. p.248, Abstr. 9th Int. Sym. Gen. Ind. Microorg. Gyeongju, 2002
  42. Song, J.S. 2002. Master's Thesis. Chungbuk National University, Cheongju
  43. Walsh, C. 2003. Natural and producer immunity versus acquired resistance, pp. 91-106. In Antibiotics, actions, origins, resistance. ASM Press, Washington DC, USA
  44. Zhao, P-J., L-M. Fan, G-H. Li, N. Zhu, and Y-M. Shen. 2005. Antibacterial and antitumor macrolides from Streptomyces sp. Is9131. Arch. Pharm. Res. 28, 1228-1232 https://doi.org/10.1007/BF02978203