Synthesis of Lactide from Oligomeric PLA: Effects of Temperature, Pressure, and Catalyst

  • Yoo, Dong-Keun (Department of Chemical Engineering, Polymer Technology Institute, Sungkyunkwan University) ;
  • Kim, Duk-Joon (Department of Chemical Engineering, Polymer Technology Institute, Sungkyunkwan University) ;
  • Lee, Doo-Sung (Department of Polymer Engineering, Polymer Technology Institute, Sungkyunkwan University)
  • 발행 : 2006.10.31

초록

Lactide was produced from oligomeric PLA by back-biting reaction of the OH end groups. For optimization of the reaction conditions, the effects of temperature, pressure, PLA molecular weight, and catalyst type on the lactide synthesis were examined. The fraction of D,L-lactide decreased with increasing temperature. Among the various Sn-based catalysts, the D,L-lactide fraction was maximized when SnO was used. A higher yield with lower racemization was observed at lower pressure. The conversion of PLA was maximized at an oligomeric PLA molecular weight of ca. 1380. The yield of lactide increased but the fraction of D,L-lactide decreased with increasing molecular weight. The highest conversion with the lowest racemization degree was obtained at a catalyst concentration of 0.1 wt%. The lactide was more sensitive to racemization because of the entropic effect.

키워드

참고문헌

  1. P. Mainilvarlet, R. Rahm, and S. Gogolewski, Biomaterials, 18, 257 (1997) https://doi.org/10.1016/S0142-9612(96)00126-3
  2. W. Hoogsteen, A. R. Postema, A. J. Pennings, and G. T. Brinke, Macromolecules, 23, 634 (1990) https://doi.org/10.1021/ma00204a041
  3. C. Bastioli, Macromol. Symp., 135, 193 (1998) https://doi.org/10.1002/masy.19981350122
  4. K.W. Kim and S. I. Woo, Macromol. Chem. Phys., 203, 2245 (2002) https://doi.org/10.1002/1521-3935(200211)203:15<2245::AID-MACP2245>3.0.CO;2-3
  5. S. I. Moon, C. H. Lee, M. Miyamoto, and Y. Kimura, J. Polym. Sci.: Part A; Polym. Chem., 38, 1673 (2000) https://doi.org/10.1002/(SICI)1099-0518(20000501)38:9<1673::AID-POLA33>3.0.CO;2-T
  6. K. Yamane, et al., USP 6916939 (2005)
  7. F. E. Kohn, J. W. A. Van Den Berg, V. D. Ridder, and J. Feijen, J. Appl. Polym. Sci., 29, 4265 (1984) https://doi.org/10.1002/app.1984.070291255
  8. G.. I. Shim, J. H. Kim, S. H. Kim, and Y. H. Kim, Korea Polym. J., 5, 19 (1997)
  9. A. J. Nijenhuis, D. W. Grijpma, and A. J. Pennings, Macromolecules, 25, 6419 (1992) https://doi.org/10.1021/ma00050a006
  10. J. Zhang, Z. Gan, Z. Zhong, and X. Jing, Polym. Int., 45, 60 (1998) https://doi.org/10.1002/(SICI)1097-0126(199801)45:1<60::AID-PI891>3.0.CO;2-W
  11. K. A. M. Thakur, R. T. Kean, E. S. Hall, J. J. Kolstad, T. A. Lidgren, M. A. Doscotch, J. I. Siepmann, and E. J. Munson, Macromolecules, 30, 2422 (1997) https://doi.org/10.1021/ma9615967
  12. K. A. M. Thakur, R. T. Kean, and E. S. Hall, Anal. Chem., 69, 4303 (1997) https://doi.org/10.1021/ac970792o
  13. P. R. Gruber, et al., USP 2574073 (1993)
  14. H. R. Kricheldorf and A. Serra, Polym. Bull., 14, 497(1985)
  15. H. R. Kricheldorf and M. Sumbel, Eur. Polym. J., 25, 585 (1989) https://doi.org/10.1016/0014-3057(89)90010-4
  16. D. R. Witzke, R. Narayan, and J. J. Kolstad, Macromolecules, 30, 7075 (1997) https://doi.org/10.1021/ma970631m
  17. H. R. Kricheldorf and S. R. Lee, Polymer, 36, 2995 (1995) https://doi.org/10.1016/0032-3861(95)94350-3
  18. D. K. Yoo, D. S. Lee, and D. Kim, Macromol. Res., 13, 68 (2005) https://doi.org/10.1007/BF03219017
  19. H. P. Benecke, et al., USP5332839 (1994)
  20. M. Muller, et al., USP 5214159 (1993)
  21. H. R. Kricheldorf and I. Kreiser-Saunders, Macromol. Chem., 191, 1057 (1990) https://doi.org/10.1002/macp.1990.021910508
  22. H. R. Kricheldorf, I. Kreiser-Saunders, and C. Boettcher, Polymer, 36, 1253 (1995) https://doi.org/10.1016/0032-3861(95)93928-F
  23. H. R. Kricheldorf and D.-O. Damaru, Macromol. Chem., 198, 1753 (1997) https://doi.org/10.1002/macp.1997.021980605
  24. H. Tsuji, I. Fukui, H. Daimon, and K. Fujie, Polym. Degrad. Stabil., 81, 501 (2003) https://doi.org/10.1016/S0141-3910(03)00150-2