References
- L. Andersson, N. Hall, B. Jawerth, and G. Peters, Wavelets on closed subsets of the real line, Topics in the Theory and Applications of Wavelets, Academic press, 1993, 1-14
- I. Babuska and A. Miller, A feedback finite element method with a-posteriori error estimation, I. The finite element method and some basic properties of the a posteriori error estimator, Comput. Methods Appl. Mech. Engrg. 61 (1987), 1-40 https://doi.org/10.1016/0045-7825(87)90114-9
- I. Babuska and W. C. Rheinboldt, Error estimates for adaptive finite element computations, SIAM J. Numer. Anal. 15 (1978), 736-754 https://doi.org/10.1137/0715049
- R. Balder and C. Zenger, The solution of multidimensional real Helmholtz equations on sparse grids, SIAM J. Sci. Comp. 17 (1996), 631-646 https://doi.org/10.1137/S1064827593247035
- R. E. Bank, T. F. Dupont, and H. Yserentant, The hierarchical basis multigrid method, Numer. Math. 52 (1988), 427-458 https://doi.org/10.1007/BF01462238
- R. E. Bank and A. Weiser, Some a posteriori error estimators for elliptic partial differential equations, Math. Comp. 44 (1985), 283-301 https://doi.org/10.2307/2007953
- A. Barinka, T. Barsch, P. Charton, A. Cohen, S. Dahlke, W. Dahmen, and U. Karsten, Adaptive wavelet schemes for elliptic problems - implementation and numerical experiments, SIAM J. Sci. Comput. 23 (2001), 910-939 https://doi.org/10.1137/S1064827599365501
- F. Bornemann, B. Erdmann, and R. Kornhuber, A posteriori error estimates for elliptic problems in two and three space dimensions, SIAM J. Numer. Anal. 33 (1996), 1188-1204 https://doi.org/10.1137/0733059
- A. Brandt, Multi-level adaptive solutions to boundary value problems, Math. Comput. 31 (1977), 333-390 https://doi.org/10.2307/2006422
- A. Brandt, Multi-level adaptive technique for fast numerical solution to boundary value problems, Proc. 3rd Int. Conf. on Numerical Methods in Fluid Mechanics, Lecture Notes in Physics, 18, 82-89, Springer-Verlag, 1973 https://doi.org/10.1007/BFb0118663
- W. L. Briggs, A Multigrid Tutorial, SIAM, 1987
- H.-J. Bungatz, Dunne Gitter und deren Anwendung bei der adaptiven Losung der dreidimensionalen Poisson-Gleichung, Technischen Universitat Munchen, 1992
- M. A. Christon and D. W. Roach, The numerical performance of wavelets for PDEs: the multi-scale finite element, Comput. Mech. 25 (2000), 230-244 https://doi.org/10.1007/s004660050472
- A. Cohen, W. Dahmen, and R. DeVore, Adaptive wavelet methods for elliptic operator equations: Convergence rates, Math. Comp. 70 (2001), 27-75
- A. Cohen, I. Daubechies, and J.-C. Feauveau, Biorthogonal bases of compactly supported wavelets, Comm. Pure Appl. Math. 45 (1992), 485-560
- A. Cohen and R. Masson, Wavelet methods for second-order elliptic problems, preconditioning, and adaptivity, SIAM J. Sci. Comp. 21 (1999), 1006-1026 https://doi.org/10.1137/S1064827597330613
- S. Dahlke, W. Dahmen, R. Hochmuth, and R. Schneider, Stable multiscale bases and local error estimation for elliptic problems, Appl. Numer. Math. 23 (1997), 21-47 https://doi.org/10.1016/S0168-9274(96)00060-8
- W. Dahmen, Wavelet methods for PDEs - some recent developments, J. Comput. Appl. Math. 128 (2001), 133-185 https://doi.org/10.1016/S0377-0427(00)00511-2
- J. M. de Villiers, K. M. Goosen, and B. M. Herbst, Dubuc-Deslauriers subdivision for finite sequences and interpolation wavelets on an interval, SIAM J. Math. Anal. 35 (2003) 423452
- D. Donoho, Interpolating wavelet transform, Stanford University, 1992
-
J. Douglas Jr., T. Dupont, and M. F. Wheeler, An
$L^{\infty}$ estimate and a super-convergence result for a Galerkin method for elliptic equations based on tensor products of piecewise polynomials, Rev. Francaise Automat. Informat. Recherche Operationnelle Ser Rouge 8 (1974), 61-66 - K. Eriksson, D. Estep, P. Hansbo, and C. Johnson, Introduction to adaptive methods for differential equations, Acta Numer. 4 (1995), 105-158 https://doi.org/10.1017/S0962492900002531
- D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, Springer-Verlag, 1983
- M. Griebel, Adaptive sparse grid multilevel methods for elliptic PDEs based on finite diffrences, Computing 61 (1998), 151-179 https://doi.org/10.1007/BF02684411
- M. Griebel and S. Knapek, Optimized tensor-product approximation spaces, Constr. Approx. 16 (2000), 525-540 https://doi.org/10.1007/s003650010010
- W. Hackbusch, On the convergence of multigrid iterations, Beit. Numer. Math. 9 (1981), 231-329
- W. Hackbusch, On the multi-grid method applied to difference equations, Computing, 20 (1978), 291-306 https://doi.org/10.1007/BF02252378
- W. Hackbusch, Survey of convergence proofs for multigrid iterations, Special topics of applied mathematics, Proceedings, Bonn, Oct. 1979, 151-164, Elsevier, 1980
- G.-W. Jang, J. E. Kim, and Y. Y. Kim, Multiscale Galerkin method using inter- polation wavelets for two dimensional elliptic problems in general domains, Int. J. Numer. Methods Engrg. 59 (2004), 225-253 https://doi.org/10.1002/nme.872
- Y. Y. Kim and G.-W. Jang, Hat interpolation wavelet-based multi-scale Galerkin method for thin-walled box beam analysis, Int. J. Numer. Methods Engrg. 53 (2002), 1575-1592 https://doi.org/10.1002/nme.352
- P. Krysl, E. Grinspun and P. Schroder, Natural hierarchical refinement for finite element methods, Int. J. Numer. Methods Engrg. 56 (2003), 1109-1124 https://doi.org/10.1002/nme.601
- S. Mallat, A wavelet tour of signal processing, Academic Press, 1998
- E. J. Stollnitz, T. D. DeRose, and D. H. Salesin, Wavelets for computer graphics: theory and applications, 21-31, Morgan Kaufmann publishers, 1996
- P. Wesseling, An introduction to multigrid methods, John Wiley & Sons, 1992
- H. Yserentant, On the multi-level splitting of finite element spaces, Numer. Math. 49 (1986), 379-412 https://doi.org/10.1007/BF01389538
- H. Yserentant, Two preconditioners based on the multi-level splitting of finite element spaces, Numer. Math. 58 (1990), 163-184 https://doi.org/10.1007/BF01385617
- C. Zenger, Sparse grids, Parallel algorithms for partial differential equations, Notes Numer. Fluid Mech., Vieweg 31 (1991)
- O. C. Zienkiewicz and A. Craig, Adaptive refinement, error estimates, multigrid solution, and hierarchic finite element method concepts, Accuracy Estimates and Adaptive Refinements in Finite Element Computations, 25-59, John Wiley & Sons, 1986
- O. C. Zienkiewicz, D. W. Kelly, J. Gago, and I. Babuska, Hierarchical finite element approaches, error estimates and adaptive refinement, The mathematics of finite elements and applications IV, 313 346, Academic Press, 1982