DOI QR코드

DOI QR Code

DECAY CHARACTERISTICS OF THE HAT INTERPOLATION WAVELET COEFFICIENTS IN THE TWO-DIMENSIONAL MULTIRESOLUTION REPRESENTATION

  • KWON KIWOON (Institute fur Numerische und Angewandte Mathematik Georg-August-Universitat Gottingen) ;
  • KIM YOON YOUNG (School of Mechanical and Aerospace Engineering Seoul NationalUniversity)
  • Published : 2005.02.01

Abstract

The objective of this study is to analyze the decay characteristics of the hat interpolation wavelet coefficients of some smooth functions defined in a two-dimensional space. The motivation of this research is to establish some fundamental mathematical foundations needed in justifying the adaptive multiresolution analysis of the hat-interpolation wavelet-Galerkin method. Though the hat-interpolation wavelet-Galerkin method has been successful in some classes of problems, no complete error analysis has been given yet. As an effort towards this direction, we give estimates on the decaying ratios of the wavelet coefficients at children interpolation points to the wavelet coefficient at the parent interpolation point. We also give an estimate for the difference between non-adaptively and adaptively interpolated representations.

Keywords

References

  1. L. Andersson, N. Hall, B. Jawerth, and G. Peters, Wavelets on closed subsets of the real line, Topics in the Theory and Applications of Wavelets, Academic press, 1993, 1-14
  2. I. Babuska and A. Miller, A feedback finite element method with a-posteriori error estimation, I. The finite element method and some basic properties of the a posteriori error estimator, Comput. Methods Appl. Mech. Engrg. 61 (1987), 1-40 https://doi.org/10.1016/0045-7825(87)90114-9
  3. I. Babuska and W. C. Rheinboldt, Error estimates for adaptive finite element computations, SIAM J. Numer. Anal. 15 (1978), 736-754 https://doi.org/10.1137/0715049
  4. R. Balder and C. Zenger, The solution of multidimensional real Helmholtz equations on sparse grids, SIAM J. Sci. Comp. 17 (1996), 631-646 https://doi.org/10.1137/S1064827593247035
  5. R. E. Bank, T. F. Dupont, and H. Yserentant, The hierarchical basis multigrid method, Numer. Math. 52 (1988), 427-458 https://doi.org/10.1007/BF01462238
  6. R. E. Bank and A. Weiser, Some a posteriori error estimators for elliptic partial differential equations, Math. Comp. 44 (1985), 283-301 https://doi.org/10.2307/2007953
  7. A. Barinka, T. Barsch, P. Charton, A. Cohen, S. Dahlke, W. Dahmen, and U. Karsten, Adaptive wavelet schemes for elliptic problems - implementation and numerical experiments, SIAM J. Sci. Comput. 23 (2001), 910-939 https://doi.org/10.1137/S1064827599365501
  8. F. Bornemann, B. Erdmann, and R. Kornhuber, A posteriori error estimates for elliptic problems in two and three space dimensions, SIAM J. Numer. Anal. 33 (1996), 1188-1204 https://doi.org/10.1137/0733059
  9. A. Brandt, Multi-level adaptive solutions to boundary value problems, Math. Comput. 31 (1977), 333-390 https://doi.org/10.2307/2006422
  10. A. Brandt, Multi-level adaptive technique for fast numerical solution to boundary value problems, Proc. 3rd Int. Conf. on Numerical Methods in Fluid Mechanics, Lecture Notes in Physics, 18, 82-89, Springer-Verlag, 1973 https://doi.org/10.1007/BFb0118663
  11. W. L. Briggs, A Multigrid Tutorial, SIAM, 1987
  12. H.-J. Bungatz, Dunne Gitter und deren Anwendung bei der adaptiven Losung der dreidimensionalen Poisson-Gleichung, Technischen Universitat Munchen, 1992
  13. M. A. Christon and D. W. Roach, The numerical performance of wavelets for PDEs: the multi-scale finite element, Comput. Mech. 25 (2000), 230-244 https://doi.org/10.1007/s004660050472
  14. A. Cohen, W. Dahmen, and R. DeVore, Adaptive wavelet methods for elliptic operator equations: Convergence rates, Math. Comp. 70 (2001), 27-75
  15. A. Cohen, I. Daubechies, and J.-C. Feauveau, Biorthogonal bases of compactly supported wavelets, Comm. Pure Appl. Math. 45 (1992), 485-560
  16. A. Cohen and R. Masson, Wavelet methods for second-order elliptic problems, preconditioning, and adaptivity, SIAM J. Sci. Comp. 21 (1999), 1006-1026 https://doi.org/10.1137/S1064827597330613
  17. S. Dahlke, W. Dahmen, R. Hochmuth, and R. Schneider, Stable multiscale bases and local error estimation for elliptic problems, Appl. Numer. Math. 23 (1997), 21-47 https://doi.org/10.1016/S0168-9274(96)00060-8
  18. W. Dahmen, Wavelet methods for PDEs - some recent developments, J. Comput. Appl. Math. 128 (2001), 133-185 https://doi.org/10.1016/S0377-0427(00)00511-2
  19. J. M. de Villiers, K. M. Goosen, and B. M. Herbst, Dubuc-Deslauriers subdivision for finite sequences and interpolation wavelets on an interval, SIAM J. Math. Anal. 35 (2003) 423452
  20. D. Donoho, Interpolating wavelet transform, Stanford University, 1992
  21. J. Douglas Jr., T. Dupont, and M. F. Wheeler, An $L^{\infty}$estimate and a super-convergence result for a Galerkin method for elliptic equations based on tensor products of piecewise polynomials, Rev. Francaise Automat. Informat. Recherche Operationnelle Ser Rouge 8 (1974), 61-66
  22. K. Eriksson, D. Estep, P. Hansbo, and C. Johnson, Introduction to adaptive methods for differential equations, Acta Numer. 4 (1995), 105-158 https://doi.org/10.1017/S0962492900002531
  23. D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, Springer-Verlag, 1983
  24. M. Griebel, Adaptive sparse grid multilevel methods for elliptic PDEs based on finite diffrences, Computing 61 (1998), 151-179 https://doi.org/10.1007/BF02684411
  25. M. Griebel and S. Knapek, Optimized tensor-product approximation spaces, Constr. Approx. 16 (2000), 525-540 https://doi.org/10.1007/s003650010010
  26. W. Hackbusch, On the convergence of multigrid iterations, Beit. Numer. Math. 9 (1981), 231-329
  27. W. Hackbusch, On the multi-grid method applied to difference equations, Computing, 20 (1978), 291-306 https://doi.org/10.1007/BF02252378
  28. W. Hackbusch, Survey of convergence proofs for multigrid iterations, Special topics of applied mathematics, Proceedings, Bonn, Oct. 1979, 151-164, Elsevier, 1980
  29. G.-W. Jang, J. E. Kim, and Y. Y. Kim, Multiscale Galerkin method using inter- polation wavelets for two dimensional elliptic problems in general domains, Int. J. Numer. Methods Engrg. 59 (2004), 225-253 https://doi.org/10.1002/nme.872
  30. Y. Y. Kim and G.-W. Jang, Hat interpolation wavelet-based multi-scale Galerkin method for thin-walled box beam analysis, Int. J. Numer. Methods Engrg. 53 (2002), 1575-1592 https://doi.org/10.1002/nme.352
  31. P. Krysl, E. Grinspun and P. Schroder, Natural hierarchical refinement for finite element methods, Int. J. Numer. Methods Engrg. 56 (2003), 1109-1124 https://doi.org/10.1002/nme.601
  32. S. Mallat, A wavelet tour of signal processing, Academic Press, 1998
  33. E. J. Stollnitz, T. D. DeRose, and D. H. Salesin, Wavelets for computer graphics: theory and applications, 21-31, Morgan Kaufmann publishers, 1996
  34. P. Wesseling, An introduction to multigrid methods, John Wiley & Sons, 1992
  35. H. Yserentant, On the multi-level splitting of finite element spaces, Numer. Math. 49 (1986), 379-412 https://doi.org/10.1007/BF01389538
  36. H. Yserentant, Two preconditioners based on the multi-level splitting of finite element spaces, Numer. Math. 58 (1990), 163-184 https://doi.org/10.1007/BF01385617
  37. C. Zenger, Sparse grids, Parallel algorithms for partial differential equations, Notes Numer. Fluid Mech., Vieweg 31 (1991)
  38. O. C. Zienkiewicz and A. Craig, Adaptive refinement, error estimates, multigrid solution, and hierarchic finite element method concepts, Accuracy Estimates and Adaptive Refinements in Finite Element Computations, 25-59, John Wiley & Sons, 1986
  39. O. C. Zienkiewicz, D. W. Kelly, J. Gago, and I. Babuska, Hierarchical finite element approaches, error estimates and adaptive refinement, The mathematics of finite elements and applications IV, 313 346, Academic Press, 1982