Browse > Article
http://dx.doi.org/10.4134/JKMS.2005.42.2.305

DECAY CHARACTERISTICS OF THE HAT INTERPOLATION WAVELET COEFFICIENTS IN THE TWO-DIMENSIONAL MULTIRESOLUTION REPRESENTATION  

KWON KIWOON (Institute fur Numerische und Angewandte Mathematik Georg-August-Universitat Gottingen)
KIM YOON YOUNG (School of Mechanical and Aerospace Engineering Seoul NationalUniversity)
Publication Information
Journal of the Korean Mathematical Society / v.42, no.2, 2005 , pp. 305-334 More about this Journal
Abstract
The objective of this study is to analyze the decay characteristics of the hat interpolation wavelet coefficients of some smooth functions defined in a two-dimensional space. The motivation of this research is to establish some fundamental mathematical foundations needed in justifying the adaptive multiresolution analysis of the hat-interpolation wavelet-Galerkin method. Though the hat-interpolation wavelet-Galerkin method has been successful in some classes of problems, no complete error analysis has been given yet. As an effort towards this direction, we give estimates on the decaying ratios of the wavelet coefficients at children interpolation points to the wavelet coefficient at the parent interpolation point. We also give an estimate for the difference between non-adaptively and adaptively interpolated representations.
Keywords
hat interpolation wavelet; decay characteristics; adaptive wavelet-Galerkin method;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 A. Barinka, T. Barsch, P. Charton, A. Cohen, S. Dahlke, W. Dahmen, and U. Karsten, Adaptive wavelet schemes for elliptic problems - implementation and numerical experiments, SIAM J. Sci. Comput. 23 (2001), 910-939   DOI   ScienceOn
2 F. Bornemann, B. Erdmann, and R. Kornhuber, A posteriori error estimates for elliptic problems in two and three space dimensions, SIAM J. Numer. Anal. 33 (1996), 1188-1204   DOI   ScienceOn
3 A. Brandt, Multi-level adaptive technique for fast numerical solution to boundary value problems, Proc. 3rd Int. Conf. on Numerical Methods in Fluid Mechanics, Lecture Notes in Physics, 18, 82-89, Springer-Verlag, 1973   DOI
4 S. Dahlke, W. Dahmen, R. Hochmuth, and R. Schneider, Stable multiscale bases and local error estimation for elliptic problems, Appl. Numer. Math. 23 (1997), 21-47   DOI   ScienceOn
5 A. Cohen and R. Masson, Wavelet methods for second-order elliptic problems, preconditioning, and adaptivity, SIAM J. Sci. Comp. 21 (1999), 1006-1026   DOI   ScienceOn
6 M. Griebel and S. Knapek, Optimized tensor-product approximation spaces, Constr. Approx. 16 (2000), 525-540   DOI   ScienceOn
7 D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, Springer-Verlag, 1983
8 M. Griebel, Adaptive sparse grid multilevel methods for elliptic PDEs based on finite diffrences, Computing 61 (1998), 151-179   DOI   ScienceOn
9 W. Hackbusch, On the convergence of multigrid iterations, Beit. Numer. Math. 9 (1981), 231-329
10 W. Hackbusch, On the multi-grid method applied to difference equations, Computing, 20 (1978), 291-306   DOI
11 W. Hackbusch, Survey of convergence proofs for multigrid iterations, Special topics of applied mathematics, Proceedings, Bonn, Oct. 1979, 151-164, Elsevier, 1980
12 G.-W. Jang, J. E. Kim, and Y. Y. Kim, Multiscale Galerkin method using inter- polation wavelets for two dimensional elliptic problems in general domains, Int. J. Numer. Methods Engrg. 59 (2004), 225-253   DOI   ScienceOn
13 Y. Y. Kim and G.-W. Jang, Hat interpolation wavelet-based multi-scale Galerkin method for thin-walled box beam analysis, Int. J. Numer. Methods Engrg. 53 (2002), 1575-1592   DOI   ScienceOn
14 J. M. de Villiers, K. M. Goosen, and B. M. Herbst, Dubuc-Deslauriers subdivision for finite sequences and interpolation wavelets on an interval, SIAM J. Math. Anal. 35 (2003) 423452
15 R. Balder and C. Zenger, The solution of multidimensional real Helmholtz equations on sparse grids, SIAM J. Sci. Comp. 17 (1996), 631-646   DOI
16 R. E. Bank and A. Weiser, Some a posteriori error estimators for elliptic partial differential equations, Math. Comp. 44 (1985), 283-301   DOI   ScienceOn
17 W. Dahmen, Wavelet methods for PDEs - some recent developments, J. Comput. Appl. Math. 128 (2001), 133-185   DOI   ScienceOn
18 D. Donoho, Interpolating wavelet transform, Stanford University, 1992
19 J. Douglas Jr., T. Dupont, and M. F. Wheeler, An $L^{\infty}$estimate and a super-convergence result for a Galerkin method for elliptic equations based on tensor products of piecewise polynomials, Rev. Francaise Automat. Informat. Recherche Operationnelle Ser Rouge 8 (1974), 61-66
20 K. Eriksson, D. Estep, P. Hansbo, and C. Johnson, Introduction to adaptive methods for differential equations, Acta Numer. 4 (1995), 105-158   DOI
21 O. C. Zienkiewicz, D. W. Kelly, J. Gago, and I. Babuska, Hierarchical finite element approaches, error estimates and adaptive refinement, The mathematics of finite elements and applications IV, 313 346, Academic Press, 1982
22 H. Yserentant, Two preconditioners based on the multi-level splitting of finite element spaces, Numer. Math. 58 (1990), 163-184   DOI
23 C. Zenger, Sparse grids, Parallel algorithms for partial differential equations, Notes Numer. Fluid Mech., Vieweg 31 (1991)
24 O. C. Zienkiewicz and A. Craig, Adaptive refinement, error estimates, multigrid solution, and hierarchic finite element method concepts, Accuracy Estimates and Adaptive Refinements in Finite Element Computations, 25-59, John Wiley & Sons, 1986
25 R. E. Bank, T. F. Dupont, and H. Yserentant, The hierarchical basis multigrid method, Numer. Math. 52 (1988), 427-458   DOI
26 A. Brandt, Multi-level adaptive solutions to boundary value problems, Math. Comput. 31 (1977), 333-390   DOI   ScienceOn
27 E. J. Stollnitz, T. D. DeRose, and D. H. Salesin, Wavelets for computer graphics: theory and applications, 21-31, Morgan Kaufmann publishers, 1996
28 I. Babuska and A. Miller, A feedback finite element method with a-posteriori error estimation, I. The finite element method and some basic properties of the a posteriori error estimator, Comput. Methods Appl. Mech. Engrg. 61 (1987), 1-40   DOI   ScienceOn
29 L. Andersson, N. Hall, B. Jawerth, and G. Peters, Wavelets on closed subsets of the real line, Topics in the Theory and Applications of Wavelets, Academic press, 1993, 1-14
30 I. Babuska and W. C. Rheinboldt, Error estimates for adaptive finite element computations, SIAM J. Numer. Anal. 15 (1978), 736-754   DOI   ScienceOn
31 P. Wesseling, An introduction to multigrid methods, John Wiley & Sons, 1992
32 H. Yserentant, On the multi-level splitting of finite element spaces, Numer. Math. 49 (1986), 379-412   DOI
33 W. L. Briggs, A Multigrid Tutorial, SIAM, 1987
34 H.-J. Bungatz, Dunne Gitter und deren Anwendung bei der adaptiven Losung der dreidimensionalen Poisson-Gleichung, Technischen Universitat Munchen, 1992
35 P. Krysl, E. Grinspun and P. Schroder, Natural hierarchical refinement for finite element methods, Int. J. Numer. Methods Engrg. 56 (2003), 1109-1124   DOI   ScienceOn
36 S. Mallat, A wavelet tour of signal processing, Academic Press, 1998
37 M. A. Christon and D. W. Roach, The numerical performance of wavelets for PDEs: the multi-scale finite element, Comput. Mech. 25 (2000), 230-244   DOI   ScienceOn
38 A. Cohen, W. Dahmen, and R. DeVore, Adaptive wavelet methods for elliptic operator equations: Convergence rates, Math. Comp. 70 (2001), 27-75
39 A. Cohen, I. Daubechies, and J.-C. Feauveau, Biorthogonal bases of compactly supported wavelets, Comm. Pure Appl. Math. 45 (1992), 485-560