References
- 강민구, 박승우 (2003). 'ENO 기법을 이용한 2차원 유한체적 수치모형,' 한국수자원학회논문집, 제36권, 제1호, pp. 1-11 https://doi.org/10.3741/JKWRA.2003.36.1.001
- 김 원, 한건연 (2000a). '고정확도 수치기법을 이용한 하천 천이류 해석 I. : 모형개발,' 한국수자원학회논문집, 제34권, 제1호, pp. 45-55
- 김 원, 한건연 (2000b). '고정확도 수치기법을 이용한 하천 천이류 해석 II. : 적용,' 한국수자원학회논문집, 제34권, 제1호, pp. 57-65
- 김 원, 한건연, 김상호 (2001). '음해적 ENO 기법을 이용한 댐 붕괴류 해석,' 대한토목학회논문집, 제21권, 제4-B호, pp. 417-426
- 이정규, 김태관 (2003). '댐붕괴 문제의 해석에 관한 TVD-McCormack 기법의 적용.' 한국수자원학회논문집, 제36권, 제3호, pp. 365-374 https://doi.org/10.3741/JKWRA.2003.36.3.365
- 이종욱, 조용식 (2001). 'TVD 수치모형의 개발: II. 천수방정식.' 한국수자원학회논문집, 제34권, 제2호, pp. 187-195
- 이종욱, 조용식, 윤광석, 윤태훈 (2001). 'TVD 수치모형의 개발: I. 선형 이송방정식.' 한국수자원학회논문집, 제34권, 제2호, pp. 177-186
- 전정숙, 이봉희, 조용식 (2003). 'TVD 기법을 이용한 불연속 흐름의 수치해석.' 한국수자원학회논문집, 제36권, 제4호, pp. 597-608 https://doi.org/10.3741/JKWRA.2003.36.4.597
- Burguete, J., and Garcia Navarro, P. (2001). 'Efficient construction of high resolution TVD conservative schemes for equations with source terms Application to shallow water flows.' International Journal for Numerical Methods in Fluids, Vol. 37, No. 2, pp. 209-248 https://doi.org/10.1002/fld.175
- Bermudez, A., and Vazquez, M.E. (1994). 'Upwind methods for hyperbolic conservation laws with source terms.' Computers & Fluids, Vol. 23, no. 8, pp. 1049-1071 https://doi.org/10.1016/0045-7930(94)90004-3
- Choi, S. U., and Paik, J.C. (2001). 'Performance test of high resolution schemes for 1D dam break problem,' Journal of Civil Engineering, KSCE, Vol. 5, No.3, pp. 273-280 https://doi.org/10.1007/BF02830659
- Delis, A.I., Skeels, C.P., and Ryrie, S.C. (2000). 'Implicit high resolution methods for modeling one dimensional open channel flow.' Journal of Hydraulic Research, Vol. 38, No. 5, pp. 369-382 https://doi.org/10.1080/00221680009498318
- Garcia Navarro, P. and Vazquez Cendon, M.E. (1997). Some considerations and improvements on the performance of Roe's scheme for 1D irregular geometries, University of Zaragoza, Spain
- Garcia Navarro, P. and Vazquez Cendon, M.E. (2000). 'On numerical treatment of the source terms in the shallow water equations.' Computers & Fluids, Vol. 29, No. 8, pp. 951-979 https://doi.org/10.1016/S0045-7930(99)00038-9
- Gliaster, P. (1988). 'Approximate Riemann solutions of the shallow water equations.' Journal of Hydraulic Research, Vol. 26, pp. 293-306 https://doi.org/10.1080/00221688809499213
- Goutal, N. and Maurel, F. (1997). Proceedings of the 2nd workshop on dam break wave simulation, HE43/97/016/B
- Hubbard, M.E. and Garcia Navarro, P. (2000). 'Flux difference splitting and the balancing of source terms and flux gradients.' Journal of Computational Physics, Vol. 165, No. 1, pp. 89-125 https://doi.org/10.1006/jcph.2000.6603
- LeVeque, R.J. (1998). 'Balancing source terms and flux gradients in high resolution Godnov methods: the quasi steady wave propagation algorithm.' Journal of Computational Physics, Vol. 146, No. 1, pp. 346-365 https://doi.org/10.1006/jcph.1998.6058
- Leveque, R.J. and Yee, H.C. (1990). 'A study of numerical methods for hyperbolic conservation laws with stiff source terms.' Journal of Computational Physics, Vol. 86, pp. 187- https://doi.org/10.1016/0021-9991(90)90097-K
- MacCormack, R.W. (1969). 'The effect of viscosity in hypervelocity impact cratering.' American Institute of Aeronautics and Astronautics, pp. 69-354
- Meselhe, E.A. (1994). Numerical simulation of transcritical flow in open channels, Ph.D. dissertation, Civil and Environmental Engineering, University of Iowa, Iowa
- Nujic, M. (1995). 'Efficient implementation of essentially nonoscillatory schemes for the computation of free surface flows.' Journal of Hydraulic Research, Vol. 33, No. 1, pp. 101-111 https://doi.org/10.1080/00221689509498687
- Roe, P.L. (1986) Upwind differenced schemes for hyperbolic conservation laws with source terms, Proceedings of the Conference on Hyperbolic Problems, Carasso Riaviart and Serre (Editors), pp. 41., Springer Verlag, New York
- Toro, E.F. (1997). Riemann solvers and numerical methods for fluid dynamics, Springer Verlag, Berlin/Heidelberg
- Vazquez Cendon, M.E. (1999). 'Improved treatment of source terms in upwind schemes for the shallow water equations in channels with irregular geometry,' Journal of Computational Physics, Vol. 148, No. 2, pp. 497-526 https://doi.org/10.1006/jcph.1998.6127
- Yang, J.Y, (1990). 'Uniformly second order accurate essentially nonoscillatory schemes for the Euler equations.' AIAA Journal, Vol. 28, No. 12, pp. 2069-2076 https://doi.org/10.2514/3.10523
- Yang, J.Y. (1991). 'Third order nonoscillatory schemes for the Euler equations.' AIAA Journal, Vol. 29, No. 10, pp. 1611-1618 https://doi.org/10.2514/3.10782
- Yang, J.Y., Hsu, C. A., and Chang, S.H. (1993). 'Computations of free surface flows, Part 1 : Onedimensional dam break flow.' Journal of Hydraulic Research, Vol. 31, No. 1, pp. 19-34 https://doi.org/10.1080/00221689309498857
- Zhou, J.G., Causon, D.M., and Ingram, D.M. (2001). 'The surface gradient method for the treatment of source terms in the shallow water equations.' Journal of Computational Physics, Vol. 168, No. 1, pp. 1-25 https://doi.org/10.1006/jcph.2000.6670
- Zhou, J.G., Causon, D.M., Ingram, D.M., Mingharn, C.G.(2002). 'Numerical solutions of the shallow water equations with discontinuous bed topography.' International Journal for Numerical Methods in Fluids, Vol. 38, pp. 769-788 https://doi.org/10.1002/fld.243
Cited by
- Estimation Technique of Computationally Variable Distance Step in 1-D Numerical Model vol.44, pp.5, 2011, https://doi.org/10.3741/JKWRA.2011.44.5.363