DOI QR코드

DOI QR Code

An Experimental Study on Tip Velocity and Downstream Recirculation Zone of Single Groyne Conditions

단일 횡수제 조건에 따른 선단부 유속과 재순환 영역에 대한 실험 연구

  • 강준구 (한국건설기술연구원 수자원연구부) ;
  • 여홍구 (한국건설기술연구원 수자원연구부) ;
  • 김성중 (한국건설기술연구원 수자원연구부)
  • Published : 2005.02.01

Abstract

Recently, the concern of groynes that provide us with various ecological environment and improvement of scenary near river as well as hydraulic improvement has greatly increased for naturalized river and ecological river restoration. However there is no adequate design guidelines in Korea. Furthermore there is lack of research for installation of groynes in Korea. Thus, in this study, we have conducted hydraulic modeling test for kinds of groyne and changes of permeability and made a study of the analysis for installation factor of groyne. Experimental conditions were the fixed bed model for flow pattern of groyne tip and separation length about changes of groyne length and permeability. The Experiments were conducted to measure velocity and drift angle at groyne tip. The main study kas measured the groyne tip velocity for a factor of scour and drift angle for velocity increase at center of channel. We have suggested the equation about groyne tip velocity rate(tip velocity/ approach velocity) and area rate(groyne area/ flow area). And In recirculation zone of groyne downstream, To study the basic data of groyne about installation interval has analyzed the change of separation length and incidence angle. We have suggested the equation about separation length rate(separation length/ groyne length), changes of permeability and installation angle.

최근 들어 자연형 하천과 하천생태계 복원에 대한 관심이 점증하면서 수리학적 기능 외에, 다양한 생태환경을 제공하고 하안 부근의 경관을 개선하는 기능을 가는 수제에 대한 관심이 커지고 있다. 그러나 현재 국내에는 수제설치에 대한 설계지침이 충분치 않을 뿐 만 아니라 국내 수행된 연구 자료가 매우 부족한 실정이다. 이에 본 연구에서는 수제 설계인자 해석을 위한 수리모형실험을 수행하였다. 실험조건은 수제선단 흐름변화와 수제하류부 재순환영역에 대한 고정상실험으로 수제길이와 투과율을 조절하여 수행하였다. 주요 분석은 수제 선단에서는 중앙부 유속증가와 세굴의 영향인자인 유속과 편향각을 측정하여 수제 선단유속비와 면적비에 대한 실험식을 제안하였다. 또한 수제하류부 재순환 영역에서는 수제 설치의 주요요인인 수제간격의 기초 자료를 해석하기 위해 흐름분리 길이와 입사각의 변화를 분석하였으며 투과율과 수제 설치각에 대한 실험식을 제안하였다.

Keywords

References

  1. Francis, J.R., Pattanick, A., and Weame, S. (1968). 'Observation of flow patterns around some simplified groyne structures in channels' Technical Note No. 8, Proc., Inst. of Civil Engineers, London, England, Dec., pp. 829-846 https://doi.org/10.1680/iicep.1968.7821
  2. Rajaratnam, N., and Nwachukwu, B. (1983). 'Flow near groyne-dike structures.' J. Hydr. Div., ASCE, 109(HY3), pp. 463-480 https://doi.org/10.1061/(ASCE)0733-9429(1983)109:3(463)
  3. Tingsanchali, T., and Maheswaran, S. (1990). '2D depth-averaged flow computation near groyne.' J. Hydr. Eng., 116(1), pp. 71-86 https://doi.org/10.1061/(ASCE)0733-9429(1990)116:1(71)
  4. Ettema, R., Muste, M. (2004). 'Scale Effects in Flume Experiments on Flow around a Spur Dike in Flatbed channel.' J. Hydr. Eng., Vol. 130, pp. 635-646 https://doi.org/10.1061/(ASCE)0733-9429(2004)130:7(635)
  5. Lloyd, M.P., Ball, D.J., and Stansby, P.K. (1995). 'Unsteady Surface-Velocimetry Field Measurement Using Particle Tracking Velocimetry,' Journal of Hydraulic Research, 33(4), pp. 519-534 https://doi.org/10.1080/00221689509498658
  6. Fujita, I. Muste, M, and Kruger, A. (1998). 'Large-Scale Particle Image Velocity for Flow Analysis in Hydraulic Applications,' Journal of Hydraulic Research, 36(3), pp. 397-414 https://doi.org/10.1080/00221689809498626
  7. Muste, M., Xiong, Z., Bradley, A., and Kruger, A. (2000). 'Large-Scale Particle Image Velocimetry: a Reliable Tool for for Physical Modeling,' Proceedings of ASCE 2000 Joint Conference on Water Resources Engineering and Water Resources Planning & Management, Minneapolis, MN https://doi.org/10.1061/40517(2000)311
  8. Wallingford HR (1997). 'Guidelines on the geometry of groynes for river training' Report SR 493
  9. 건설부 (2002). 하천시설기준
  10. 日本, 晃一,(1996)日本の水制, 山海堂,日本
  11. Nikitin, I., (1995). 本制の理論と計算, 福留脩文.山脇正 俊譯, 信山社イテック,日本

Cited by

  1. An Experimental Study on Flow Characteristics for Optimal Spacing Suggestion of 45° Upward Groynes vol.47, pp.5, 2014, https://doi.org/10.3741/JKWRA.2014.47.5.459
  2. Flume experiments for turbulent flow around a spur dike vol.49, pp.8, 2016, https://doi.org/10.3741/JKWRA.2016.49.8.707
  3. Development and Application of Real-time Bridge Scour Monitoring System vol.03, pp.10, 2011, https://doi.org/10.4236/eng.2011.310121
  4. Experimental Study on the Flow Characteristics around the Refraction Groyne vol.03, pp.08, 2011, https://doi.org/10.4236/eng.2011.38103
  5. Experimental Study on the Flow Characteristics of ¬-Type Groyne vol.03, pp.10, 2011, https://doi.org/10.4236/eng.2011.310124
  6. Numerical investigation of space effects of serial spur dikes on flow and bed changes by using Nays2D vol.49, pp.3, 2016, https://doi.org/10.3741/JKWRA.2016.49.3.241
  7. Application of 2 Dimensional Numerical Model for Analysis of Riprap Weir Effect vol.16, pp.2, 2015, https://doi.org/10.5762/KAIS.2015.16.2.1441
  8. Flow Characteristic Variations on Groyne Types for Aquatic Habitats vol.04, pp.11, 2012, https://doi.org/10.4236/eng.2012.411103