In Vivo $^{13}C$-NMR Spectroscopic Study of Polyhydroxyalkanoic Acid Degradation Kinetics in Bacteria

  • Oh, Jung-Sook (Biomaterials Science Laboratory, Division of Applied Life Sciences (BK21), Graduate School, Central Laboratory R&D Center, MUHAK Co., LTD.) ;
  • Choi, Mun-Hwan (Environmental Biotechnology National Core Research Center, Gyeongsang National University) ;
  • Yoon, Sung-Chul (Biomaerals Science Laboratory, Division of Applied Life Sciences (BK21), Graduate School, Division of Life Science, College of Natural Sciences, Environmental Biotechnology National Core Research Center, Gyeongsang National University)
  • Published : 2005.12.01

Abstract

Polyhydroxyalkanoic acid (PHA) inclusion bodies were analyzed in situ by $^{13}C$-nuclear magnetic resonance ($^{13}C$-NMR) spectroscopy. The PHA inclusion bodies studied were composed of poly(3-hydroxybutyrate) or poly(3hydroxybutyrate-co-4-hydroxybutyrate), which was accumulated in Hydrogenophaga pseudoflava, and medium-chain-length PHA (MCL-PHA), which was accumulated in Pseudomonas fluorescens BM07 from octanoic acid or 11-phenoxyundecanoic acid (11-POU). The quantification of the $^{13}C$-NMR signals was conducted against a standard compound, sodium 2,2-dimethyl-2-silapentane-5-sulfonate (DSS). The chemical shift values for the in vivo NMR spectral peaks agreed well with those for the corresponding purified PHA polymers. The intracellular degradation of the PHA inclusions by intracellular PHA depolymerase(s) was monitored by in vivo NMR spectroscopy and analyzed in terms of first-order reaction kinetics. The H. pseudoflava cells were washed for the degradation experiment, transferred to a degradation medium without a carbon source, but containing 1.0 g/l ammonium sulfate, and cultivated at $35^{\circ}C$ for 72 h. The in vivo NMR spectra were obtained at $70^{\circ}C$ for the short-chain-length PHA cells whereas the spectra for the aliphatic and aromatic MCL-PHA cells were obtained at $50^{\circ}C\;and\;80^{\circ}C$, respectively. For the H. pseudoflava cells, the in vivo NMR kinetics analysis of the PHA degradation resulted in a first-order degradation rate constant of 0.075/h ($r^{2}$=0.94) for the initial 24 h of degradation, which was close to the 0.050/h determined when using a gas chromatographic analysis of chloroform extracts of sulfuric acid/methanol reaction mixtures of dried whole cells. Accordingly, it is suggested that in vivo $^{13}C$-NMR spectroscopy is an important tool for studying intracellular PHA degradation in terms of kinetics.

Keywords

References

  1. Alper, R., D. G. Lundgren, R. H. Marchessault, and W. A. Cote. 1963. Properties of poly-$\beta$-hydroxybutyrate. I. General considerations concerning the naturally occurring polymer. Biopolymers 1: 545-556 https://doi.org/10.1002/bip.360010605
  2. Barnard, G. N. and J. K. M. Sanders. 1988. Observation of mobile poly($\beta$-hydroxybutyrate) in the storage granules of Methylobacterium AM1 by in vivo $^{13}C$-NMR spectroscopy. FEBS Lett. 231: 16-18 https://doi.org/10.1016/0014-5793(88)80693-8
  3. Barnard, G. N. and J. K. M. Sanders. 1989. The poly-$\beta$- hydroxybutyrate granule in vivo. A new insight based on NMR spectroscopy of whole cells. J. Biol. Chem. 264: 3286-3291
  4. Choi, M. H., H.-J. Lee, J. K. Rho, S. C. Yoon, J. D. Nam, D. Lim, and R. W. Lenz. 2003. Biosynthesis and local sequence specific degradation of poly(3-hydroxyvalerateco- 4-hydroxybutyrate) in Hydrogenophaga pseudoflava. Biomacromolecules 4: 38-45 https://doi.org/10.1021/bm025596s
  5. Choi, M. H., J. K. Rho, H.-J. Lee, J. J. Song, S. C. Yoon, and S. Y. Lee. 2003. First order kinetics analysis of monomer composition dependent polyhydroxyalkanoic acid degradation in Pseudomonas spp. Biomacromolecules 4: 424-428 https://doi.org/10.1021/bm0257199
  6. Choi, M. H. and S. C. Yoon. 1994. Polyester biosynthesis characteristics of Pseudomonas citronellolis grown on various carbon sources, including 3-methyl-branched substrates. Appl. Environ. Microbiol. 60: 3245-3254
  7. Choi, M. H., S. C. Yoon, and R. W. Lenz. 1999. Production of poly(3-hydroxybutyric acid-co-4-hydroxybutyric acid) and poly(4-hydroxybutyric acid) without subsequent degradation by Hydrogenophaga pseudoflava. Appl. Environ. Microbiol. 65(4): 1570-1577
  8. Chung, D. M., M. H. Choi, J. J. Song, S. C. Yoon, I.-K. Kang, and N. E. Huh. 2001. Intracellular degradation of two structurally different polyhydroxyalkanoic acid accumulated in Pseudomonas putida and Pseudomonas citronellolis from mixtures of octanoic acid and 5-phenylvaleric acid. Int. J. Biol. Macromol. 29: 243-250 https://doi.org/10.1016/S0141-8130(01)00172-6
  9. Curley, J. M., R. W. Lenz, R. C. Fuller, S. E. Browne, C. B. Gabriel, and S. Panday. 1997. $^{13}C$ n.m.r. spectroscopy in living cell of Pseudomonas oleovorans. Polymer 38(21): 5313-5319 https://doi.org/10.1016/S0032-3861(97)00088-8
  10. Doi, Y., Y. Nakamura, and K. Soga. 1988. Nuclear magnetic resonance studies on unusual bacterial copolyesters of 3- hydroxybutyrate and 4-hydroxybutyrate. Macromolecules 21: 2722-2727 https://doi.org/10.1021/ma00187a012
  11. Hong, S. H., S. Y. Moon, and S. Y. Lee. 2003. Prediction of maximum yields of metabolites and optimal pathways for their production by metabolic flux analysis. J. Microbiol. Biotechnol. 13: 571-577
  12. Madison, L. L. and G. W. Huisman. 1999. Metabolic engineering of poly(3-hydroxyalkanoates): From DNA to plastic. Microbiol. Mol. Biol. Rev. 63: 21-53
  13. Jendrossek, D. and R. Handrick. 2002. Microbial degradation of polyhydroxyalkanoates. Annu. Rev. Microbiol. 56: 403-432 https://doi.org/10.1146/annurev.micro.56.012302.160838
  14. Kawaguchi, Y. and Y. Doi. 1990. Structure of native poly(3- hydroxybutyrate) granules characterized by X-ray diffraction. FEMS Microbiol. Lett. 79: 151-156
  15. Kim, T.-K., H.-D. Shin, M.-C. Seo, J.-N. Lee, and Y.-H. Lee. 2003. Molecular structure of PCR cloned PHA synthase genes of Pseudomonas putida KT2440 and its utilization for medium-chain length polyhydroxyalkanoate production. J. Microbiol. Biotechnol. 13: 182-190
  16. Kobayashi, T., M. Shiraki, T. Abe, A. Sugiyama, and T. Saito. 2003. Purification of properties of an intracellular 3- hydroxybutyrate-oligomer hydrolase (PhaZ2) in Ralstonia eutropha H16 and its identification as a novel intracellular poly(3- hydroxybutyrate) depolymerase. J. Bacteriol. 185: 3485-3490 https://doi.org/10.1128/JB.185.12.3485-3490.2003
  17. Lee, H.-J., M. H. Choi, T. U. Kim, and S. C. Yoon. 2001. Accumulation of polyhydroxyalkanoic acid containing large amounts of unsaturated monomers in Pseudomonas fluorescens BM07 utilizing saccharides and its inhibition by 2- bromooctanoic acid. Appl. Environ. Microbiol. 67: 4963-4974 https://doi.org/10.1128/AEM.67.11.4963-4974.2001
  18. Lee, H.-J., J. K. Rho, K. A. Noghabi, S. E. Lee, M. H. Choi, and S. C. Yoon. 2004. Channeling of intermediates derived from medium-chain fatty acids and de novo-synthesized fatty acids to polyhydroxyalkanoic acid by 2-bromooctanoic acid in Pseudomonas fluorescens BM07. J. Microbiol. Biotechnol. 14: 1256-1266
  19. Lee, H.-J., J. K. Rho, and S. C. Yoon. 2004. Growth temperature-dependent conversion of de novo-synthesized unsaturated fatty acids into polyhydroxyalkanoic acid and membrane cyclopropane fatty acids in the psychrotrophic bacterium Pseudomonas fluorescens BM07. J. Microbiol. Biotechnol. 14: 1217-1226
  20. Lundgren, D. G., R. Alper, C. Schnaitman, and R. H. Marchessault. 1965. Characterization of poly-$\beta$-hydroxybutyrate extracted from different bacteria. J. Bacteriol. 89: 245-251 https://doi.org/10.1002/path.1700890125
  21. Nickerson, K. W. 1982. Purification of poly-$\beta$-hydroxybutyrate by density gradient centrifugation in sodium bromide. Appl. Environ. Microbiol. 43: 1208-1209
  22. Rhee, K.-H. 2003. Purification and identification of an antifungal agent from Streptomyces sp. KH-614 antagonistic to rice blast fungus, Pyricularia oryzae. J. Microbiol. Biotechnol. 13: 984-988
  23. Saito, Y. and Y. Doi. 1994. Microbial synthesis and properties of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) in Comamonas acidovorans. Int. J. Biol. Macromol. 16: 99-104 https://doi.org/10.1016/0141-8130(94)90022-1
  24. Seo, M. C., H. D. Shin, and Y.-H. Lee. 2004. Transcriptional level of granule-associated phaP and phaR genes and granular morphogenesis of poly-$\beta$-hydroxybutyrate granules Ralstonia eutropha. Biotechnol. Lett. 26: 617-622 https://doi.org/10.1023/B:BILE.0000023018.00625.c4
  25. Shaw, G. L., M. K. Melby, D. M. Horowitz, J. Keeler, and J. K. M. Sanders. 1994. Nuclear magnetic resonance relaxation studies of poly(hydroxybutyrate) in whole cells and in artificial granules. Int. J. Biol. Macromol. 16(2): 59-63 https://doi.org/10.1016/0141-8130(94)90015-9
  26. Song, J. J. and S. C. Yoon. 1996. Biosynthesis of novel aromatic copolyesters from insoluble 11-phenoxyundecanoic acid by Pseudomonas putida BM01. Appl. Environ. Microbiol. 62: 536-544
  27. Song, J. J., S. C. Yoon, S. M. Yu, and R. W. Lenz. 1998. Differential scanning calorimetric study of poly(3- hydroxyoctanoate) inclusions in bacterial cells. Int. J. Biol. Macromol. 23: 165-173 https://doi.org/10.1016/S0141-8130(98)00046-4
  28. Walther-Mauruschat, A., M. Aragno, F. Mayer, and H. G. Schlegel. 1977. Micromorphology of gram-negative hydrogen bacteria. Cell envelope, membranes, and cytoplasmic inclusions. Arch. Microbiol. 114: 101-110 https://doi.org/10.1007/BF00410770
  29. Yoon, S. C. and M. H. Choi. 1999. Local sequence dependence of polyhydroxyalkanoic acid degradation in Hydrogenophaga pseudoflava. J. Biol. Chem. 274(53): 37800-37808 https://doi.org/10.1074/jbc.274.53.37800
  30. York, G. M., J. Lupberger, J. Tian, A. G. Lawrence, J. A. Stubbe, and A. J. Sinskey. 2003. Ralstonia eutropha H16 encodes two and possibly three intracellular poly[D-(-)-3-hydroxybutyrate] depolymerase genes. J. Bacteriol. 185: 3788-3794 https://doi.org/10.1128/JB.185.13.3788-3794.2003