Identification of the Vibrio vulnificus fexA Gene and Evaluation of its Influence on Virulence

  • JU HYUN-MOK (Department of Molecular Biotechnology, Chonnam National University) ;
  • HWANG IN-GYUN (Division of Food Microbiology, Korea Food and Drug Administration) ;
  • WOO GUN-JO (Division of Food Microbiology, Korea Food and Drug Administration) ;
  • KIM TAE SUNG (School of Life Sciences and Biotechnology, Korea University) ;
  • CHOI SANG HO (Department of Food Science and Technology, School of Agricultural Biotechnology, and Center for Agricultural Biomaterials, Seoul National University)
  • Published : 2005.12.01

Abstract

Vibrio vulnificus is the causative agent of foodborne diseases such as gastroenteritis and life-threatening septicemia. Microbial pathogenicity is a complex phenomenon in which expression of numerous virulence factors is frequently controlled by a common regulatory system. In the present study, a mutant exhibiting decreased cytotoxic activity toward intestinal epithelial cells was screened from a library of V. vulnificus mutants constructed by a random transposon mutagenesis. By a transposon-tagging method, an open reading frame, fexA, a homologue of Escherichia coli areA, was identified and cloned. The nucleotide and deduced amino acid sequences of the fexA were analyzed, and the amino acid sequence of FexA from V. vulnificus was $84\%\;to\;97\%$ similar to those of AreA, an aerobic respiration control global regulator, from other Enterobacteriaceae. Functions of the FexA were assessed by the construction of an isogenic mutant, whose fexA gene was inactivated by allelic exchanges, and by evaluating its phenotype changes in vitro and in mice. The disruption of fexA resulted in a significant alteration in growth rate under aerobic as well as anaerobic conditions. When compared to the wild-type, the fexA mutant exhibited a substantial decrease in motility and cytotoxicity toward intestinal epithelial cell lines in vitro. Furthermore, the intraperitoneal $LD_{50}$ of the fexA mutant was approximately $10^{1}-10^{2}$ times higher than that of parental wild-type. Therefore, it appears that FexA is a novel global regulator controlling numerous genes and contributing to the pathogenesis as well as growth of V. vulnificus.

Keywords

References

  1. Alexeeva, S., B. Kort, G. Sawers, K. J. Hellingwerf, and M. J. T. Mattos. 2000. Effects of limited aeration and of the ArcAB system on intermediary pyruvate catabolism in Escherichia coli. J. Bacteriol. 182: 4934-4940 https://doi.org/10.1128/JB.182.17.4934-4940.2000
  2. Contreras, I., C. S. Toro, G. Troncoso, and G. C. Mora. 1997. Salmonella typhi mutants defective in anaerobic respiration are impaired in their ability to replicate within epithelial cells. Microbiology 143: 2665-2672 https://doi.org/10.1099/00221287-143-8-2665
  3. De Lorenzo, V., M. Herrero, U. Jakubzik, and K. N. Timmis. 1990. Mini-Tn5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in gram-negative eubacteria. J. Bacteriol. 172: 6568-6572 https://doi.org/10.1128/jb.172.11.6568-6572.1990
  4. Donnenberg, M. S. and J. B. Kaper. 1991. Construction of an eae deletion mutant of enteropathogenic Escherichia coli by using a positive-selection suicide vector. Infect. Immun. 59: 4310-4317
  5. Falkow, S. 1988. Molecular Koch's postulates applied to microbial pathogenicity. Rev. Infect. Dis. 10: S274-S276 https://doi.org/10.1093/cid/10.Supplement_2.S274
  6. Geogellis, D., O. Kwon, and E. C. C. Lin. 1999. Amplification if signaling activity of the Arc two-component system of Escherichia coli by anaerobic metabolites. J. Biol. Chem. 274: 35950-35954 https://doi.org/10.1074/jbc.274.50.35950
  7. Guest, J. R., M. M. Attwood, R. S. Machado, K. Y. Matqi, J. E. Shaw, and S. L. Turner. 1997. Enzymological and physiological consequences of restructuring the lipoyl domain content of the pyruvate dehydrogenase complex of Escherichia coli. Microbiology 143: 457-466 https://doi.org/10.1099/00221287-143-2-457
  8. Guiney, D. G. 1997. Regulation of virulence gene expression by the host environment. J. Clin. Investig. 99: 7991-7995
  9. Gulig, P. A. 1993. Use of isogenic mutants to study bacterial virulence factors. J. Microbiol. Methods 18: 275-287 https://doi.org/10.1016/0167-7012(93)90042-G
  10. Iuchi, S. and E. C. C. Lin. 1988. arcA(dye), a global regulatory gene in Escherichia coli mediating repression of aerobic pathways. Proc. Natl. Acad. Sci. USA 85: 1888- 1892
  11. Iuchi, S., C. Cameron, and E. C. C. Lin. 1989. A second global regulator gene (arcB) mediating repression of enzymes in aerobic pathway of Escherichia coli. J. Bacteriol. 171: 868-873 https://doi.org/10.1128/jb.171.2.868-873.1989
  12. Jacobsen, I., I. Henning-Pauka, N. Baltes, M. Trost, and G. F. Gerlach. 2005. Enzymes involved in anaerobic respiration appear to play a role in Actinobacillus pleuropneumoniae virulence. Infect. Immun. 73: 226-234 https://doi.org/10.1128/IAI.73.1.226-234.2005
  13. Jeong, H. S., M. H. Lee, K. H. Lee, S. J. Park, and S. H. Choi. 2003. SmcR and cyclic AMP receptor protein coactivate Vibrio vulnificus vvpE encoding elastase through the RpoS-dependent promoter in a synergistic manner. J. Biol. Chem. 276: 13875-13880
  14. Jeong, K. C., H. S. Jeong, J. H. Rhee, S. E. Lee, S. S. Chung, A. M. Starks, G. M. Escudero, P. A. Gulig, and S. H. Choi. 2000. Construction and phenotypic evaluation of Vibrio vulnificus vvpE mutant for elastolytic protease. Infect. Immun. 68: 5096-5106 https://doi.org/10.1128/IAI.68.9.5096-5106.2000
  15. Keen, N. T., S. Tamaki, D. Kobayashi, and D. Trollinger. 1988. Improved broad-host-range plasmids for DNA cloning in gram-negative bacteria. Gene 70: 191-197 https://doi.org/10.1016/0378-1119(88)90117-5
  16. Kim, H. J., J. H. Lee, J. E. Rhee, H. S. Jeong, H. K. Choi, H. J. Chung, S. Ryu, and S. H. Choi. 2002. Identification and functional analysis of the putAP genes encoding Vibrio vulnificus proline dehydrogenase and proline permease. J.Microbiol. Biotechnol. 12: 318-326
  17. Lee, J. H., B. R. Jong, K. J. Park, C. B. Kim, Y. S. Han, S. H. Choi, K. H. Lee, and S. J. Park. 2004. Role of flagellum and motility in pathogenesis of Vibrio vulnificus. Infect. Immun. 72: 4905-4910 https://doi.org/10.1128/IAI.72.8.4905-4910.2004
  18. Lin, E. C. C. and S. Iuchi. 1991. Regulation of gene expression in fermentative and respiratory systems in Escherichia coli and related bacteria. Annu. Rev. Genet. 25: 361-387 https://doi.org/10.1146/annurev.ge.25.120191.002045
  19. Linkous, D. A. and J. D. Oliver. 1999. Pathogenesis of Vibrio vulnificus. FEMS Microbiol. Lett. 174: 207-214 https://doi.org/10.1111/j.1574-6968.1999.tb13570.x
  20. Lynch, A. S. and E. C. C. Lin. 1996. Response to Molecular Oxygen, pp. 1526-1549. ASM Press, Washington, D.C., U.S.A
  21. Mekalanos, J. J. 1992. Environmental signals controlling expression of virulence determinants in bacteria. J. Bacteriol. 174: 1-7 https://doi.org/10.1128/jb.174.1.1-7.1992
  22. Miller, J. F., J. J. Mekalanos, and S. Falkow. 1989. Coordinate regulation and sensory transduction in the control of bacterial virulence. Science 243: 916-922 https://doi.org/10.1126/science.2537530
  23. Miller, V. L. and J. J. Mekalanos. 1988. A novel suicide vector and its use in construction of insertion mutations: Osmoregulation of outer membrane proteins and virulence determinants in Vibrio cholerae requires toxR. J. Bacteriol. 170: 2575-2583 https://doi.org/10.1128/jb.170.6.2575-2583.1988
  24. Oka, A., H. Sugisaki, and M. Takanami. 1981. Nucleotide sequence of the kanamycin resistance transposon Tn903. J. Mol. Biol. 147: 217-226 https://doi.org/10.1016/0022-2836(81)90438-1
  25. Oshima, T., H. Aiba, Y. Masuda, S. Kanaya, M. Sugiura, B. L. Wanner, H. Mori, and T. Mizuno. 2002. Transcriptome analysis of all two-component regulatory system mutants of Escherichia coli K-12. Mol. Microbiol. 46: 281-291 https://doi.org/10.1046/j.1365-2958.2002.03170.x
  26. Reed, L. J. and H. Muench. 1938. A simple method of estimating fifty percent endpoints. Am. J. Hyg. 27: 439-497
  27. Rhee, J. E., J. H. Rhee, P. Y. Ryu, and S. H. Choi. 2002. Identification of the cadBA operon from Vibrio vulnificus and its influence on survival to acid stress. FEMS Microbiol. Lett. 208: 245-251
  28. Sambrook, J. and D. W. Russell. 2001. Molecular Cloning: A Laboratory Manual, 3rd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, U.S.A
  29. Sengupta, N., K. Paul, and R. Chowdhury. 2003. The global regulator ArcA modulates expression of virulence factor in Vibrio cholerae. Infect. Immun. 71: 5583-5589 https://doi.org/10.1128/IAI.71.10.5583-5589.2003
  30. Staskawicz, B., D. Dahlbeck, N. Keen, and C. Napoli. 1978. Molecular characterization of cloned avirulence genes from Race 0 and Race 1 of Pseudomonas syringae pv. Glyciea. J. Bacteriol. 169: 5789-5794
  31. Stanier, R. Y., J. L. Ingraham, M. L. Wheelis, and P. R. Painter. 1986. Microbial growth, pp. 183-194. In: The Microbial World, 5th Ed. Prentice-Hall, New Jersey, U.S.A
  32. Strom, M. and R. N. Paranjpye. 2000. Epidemiology and pathogenesis of Vibrio vulnificus. Microbes Infect. 2: 177- 188 https://doi.org/10.1016/S1286-4579(00)00270-7
  33. Uden, G., S. Becker, J. G. Holighaus, J. Schirawski, and S. Six. 1995. $O_2$-sensing and $O_2$-dependent gene regulation in facultatively anaerobic bacteria. Arch. Microbiol. 164: 81- 90