Characterization of Electrical Properties of Si Nanocrystals Embedded in a SiO$_{2}$ Layer by Scanning Probe Microscopy

Scanning Probe Microscopy를 이용한 국소영역에서의 실리콘 나노크리스탈의 전기적 특성 분석

  • Published : 2005.10.01

Abstract

Si nanocrystal (Si NC) memory device has several advantages such as better retention, lower operating voltage, reduced punch-through and consequently a smaller cell area, suppressed leakage current. However, the physical and electrical reasons for this behavior are not completely understood but could be related to interface states of Si NCs. In order to find out this effect, we characterized electrical properties of Si NCs embedded in a SiO$_{2}$ layer by scanning probe microscopy (SPM). The Si NCs were generated by the laser ablation method with compressed Si powder and followed by a sharpening oxidation. In this step Si NCs are capped with a thin oxide layer with the thickness of 1$\~$2 nm for isolation and the size control. The size of 51 NCs is in the range of 10$\~$50 m and the density around 10$^{11}$/cm$^{2}$ It also affects the interface states of Si NCs, resulting in the change of electrical properties. Using a conducting tip, the charge was injected directly into each Si NC, and the image contrast change and dC/dV curve shift due to the trapped charges were monitored. The results were compared with C-V characteristics of the conventional MOS capacitor structure.

Keywords

References

  1. S. Tiwari, F. Rana, H. Hanafi, A. Hartstein, E. F. Crabbe, and K. Chan, 'A silicon nanocrystals based memory,' Appl. Phys. Lett. 68, 1377, 1996 https://doi.org/10.1063/1.116085
  2. L. Guo, E. Leobandung, and S. Y. Chou, 'Silicon single-electron transistor memory operating at room temperature,' Science 275, 649, 1997 https://doi.org/10.1126/science.275.5300.649
  3. Q. Ye, R. Tsu, and E. H. Nicollian, 'Resonant tunneling via microcrystalline-silicon quantum confinement,' Phys, Rev. B 44, 1806, 1991 https://doi.org/10.1103/PhysRevB.44.1806
  4. S.-H. Choi and R. G. Elliman, 'Reversible charging effects in $SiO_2$ films containing Si nanocrystals,' Appl, Phys, Lett. 75, 968, 1999 https://doi.org/10.1063/1.124569
  5. S. Tiwari, F. Rana, K. Chan , L. Shi, and H. Hanafi, 'Single charge and confinement effects in nano-crystal memories,' Appl. Phys. Lett., vol. 69, pp. 1232-1234, 1996 https://doi.org/10.1063/1.117421
  6. L. Burgi, H. Sirringhaus, and R. H. Friend, 'Noncontact potentiometry of polymer field-effect transistors,' Appl. Phys. Lett. 80, 2913, 2002 https://doi.org/10.1063/1.1470702
  7. T. Hassenkam, D. R. Greve, and T. Bjrnholm, 'Direct Visualization of the Nanoscale Morphology of Conducting Poly thiophene Monolayers Studied by Electrostatic Force Microscopy,' Adv. Mater. 13, 631, 2001 https://doi.org/10.1002/1521-4095(200105)13:9<631::AID-ADMA631>3.0.CO;2-F
  8. T. Melin, H. Diesinger, D. Deresmes, and D. Stievenard, 'Electric force microscopy of individually charged nanoparticles on conductors: An analytical model for quantitative charge imaging,' Phys, Rev. B 69, 035321, 2004 https://doi.org/10.1103/PhysRevB.69.035321
  9. T. Melin, D. Deresmes, and D. Stievenard, 'Charge injection in individual silicon nanoparticles deposited on a conductive substrate,' Appl, Phys. Lett. 81, 5054, 2002 https://doi.org/10.1063/1.1532110
  10. K. M. Mang, Y. Kuk, J. Kwon, Y. S. Kim, D. Jeon, and C. J. Kang, 'Direct imaging of charge redistribution in a thin $SiO_2$ layer,' Europhys. Lett. 67, 261, 2004 https://doi.org/10.1209/epl/i2003-10288-6
  11. C. C. Williams, J. Slinkman, W. P. Hough, and H. K. Wickramasinghe, 'Lateral dopant profiling with 200 nm resolution by scanning capacitance microscopy,' Appl, Phys. Lett. 55, 1662, 1989 https://doi.org/10.1063/1.102312
  12. R. C. Barrett and C. F. Quate, 'Charge storage in a nitride-oxide-silicon medium by scanning capacitance microscopy,' J. Appl. Phys., vol. 70, pp. 2725-2733, 1991 https://doi.org/10.1063/1.349388
  13. Y. Huang, C. C. Williams, and H. Smith, 'Direct comparison of cross-sectional scanning capacitance microscope dopant profile and vertical secondary ion-mass spectroscopy profile,' J. Vac. Sci. Technol. B 14, 433, 1996 https://doi.org/10.1116/1.588489
  14. J. J. Kopanski, J. F. Marchiando, and J. R. Lowney, 'Scanning capacitance microscopy measurements and modeling: Progress towards dopant profiling of silicon,' J. Vac. Sci. Technol. B 14, 242, 1996 https://doi.org/10.1116/1.588455
  15. G. Neubauer, A. Erickson, C. C. Williams, J. J. Kopanski, M. Rodgers, arid D. Adderton, 'Two-dimensional scanning capacitance microscopy measurements of cross-sectioned very large scale integration test structures,' J. Vac. Sci. Technol. B 14, 426, 1996 https://doi.org/10.1116/1.588487
  16. C. J. Kang, G. H. Buh, S. Lee, C. K. Kim, K. M. Mang, C. Im, and Y. Kuk, 'Charge trap dynamics in a $SiO_2$ layer on Si by scanning capacitance microscopy,' Appl, Phys, Lett. 74, 1815, 1999 https://doi.org/10.1063/1.123095
  17. G. H. Buh, H. J. Chung, J. H. Yi, I. T.Yoon, and Y. Kuk,'Electrical characterization of an operating Si pn-junction diode with scanning capacitance microscopy and Kelvin probe force microscopy,' J. Appl, Phys. 90, 443, 2001 https://doi.org/10.1063/1.1375803
  18. H. Edwards, R. McGlothin, R. S. Martin, Elisa U, M. Gribelyuk, R. Mahaffy, C. K. Shih, R. S. List and V. A. Ukraintsev, 'Scanning capacitance spectroscopy: An analytical technique for pn-junction delineation in Si devices,' Appl. Phys. Lett. 72, 698, 1998 https://doi.org/10.1063/1.120849
  19. J. W. Hong, S. M. Shin, C. J. Kang, Y. Kuk, and Z. G. Khim, 'Local charge trapping and detection of trapped charge by scanning capacitance microscope in the $SiO_2$/Si system, 'Appl. Phys, Lett. 75, 1760, 1999 https://doi.org/10.1063/1.124811