DOI QR코드

DOI QR Code

LSGM계 고체산화물 연료전지의 전기화학적 성능에 미치는 계면반응층의 영향

Effect of Interfacial Reaction Layer on the Electrochemical Performance of LSGM-Based SOFCs

  • 김광년 (한국과학기술연구원 재료연구부, 연세대학교 세라믹공학과) ;
  • 문주호 (연세대학교 세라믹공학과) ;
  • 김형철 (한국과학기술연구원 재료연구부) ;
  • 손지원 (한국과학기술연구원 재료연구부) ;
  • 김주선 (한국과학기술연구원 재료연구부) ;
  • 이해원 (한국과학기술연구원 재료연구부) ;
  • 이종호 (한국과학기술연구원 재료연구부) ;
  • 김병국 (한국과학기술연구원 재료연구부)
  • Kim, Kwang-Nyeon (Materials Division, Korea Institute f Science and Technology, School of Advanced Materials Engineering, Yonsei University) ;
  • Moon, Jooho (School of Advanced Materials Engineering, Yonsei University) ;
  • Kim, Hyoungchul (Materials Division, Korea Institute of Science and Technology) ;
  • Son, Ji-Won (Materials Division, Korea Institute of Science and Technology) ;
  • Kim, Joosun (Materials Division, Korea Institute of Science and Technology) ;
  • Lee, Hae-Weon (Materials Division, Korea Institute of Science and Technology) ;
  • Lee, Jong-Ho (Materials Division, Korea Institute of Science and Technology) ;
  • Kim, Byung-Kook (Materials Division, Korea Institute of Science and Technology)
  • 발행 : 2005.10.01

초록

LSGM is known to show very serious interfacial reaction with other unit cell components, such as electrode, electrode functional or buffering layers. Especially, the formation of very resistive LaSr$Ga_{3}$$O_{7}$ phase at the interface of an anode and an electrolyte is the most problematic one in LSGM-based SOFCs. In this study, we investigated the interfacial reactions in LSGM-based SOFCs under different unit cell configurations. According to the microstructural analysis on the interfacial layer between an electrolyte and its neighboring component, serious interfacial reaction zone was observed. From the electrical and electrochemical characterization of the cell, we found such an interfacial reaction zone not only increased the internal ohmic resistance but also decreased the OCV(Open Cell Voltage) of the unit cell, and thus consequently deteriorated the unit cell performance.

키워드

참고문헌

  1. M. Hrovat, A. Ahmad-Khanlou, Z. Samardzija, and J. Hole, 'Interactions between Lanthanum Gallate Based Solid Electrolyte and Ceria,' Mater. Res. Bull., 34 2027-34 (1999) https://doi.org/10.1016/S0025-5408(99)00220-2
  2. N. Maffei and G. de Silveira, 'Interfacial Layers in Tape Cast Anode-Supported Doped Lanthanum Gallate SOFC Elements,' Solid State Jonics, 159 209-16 (2003) https://doi.org/10.1016/S0167-2738(02)00695-1
  3. A. Naoumidis, A. Ahmad-Khanlou, Z. Samardzija, and D. Kolar, 'Chemical Interaction and Diffusion on Interface Cathode/Electrolyte of SOFC,' J. Anal. Chem., 365 277-81 (1999) https://doi.org/10.1007/s002160051488
  4. K. Huang, J. H. Wan, and J. B. Goodenough, 'Increasing Power Density of LSGM-Based Solid Oxide Fuel Cell Using New Anode Materials,' J. Electro. Soc., 148 [7] 788-94 (2001) https://doi.org/10.1149/1.1378289
  5. F. W. Poulsen and N. van der Puil, 'Phase Relations and Conductivity of Sr- and La-Zirconates ' Solid State Ionics 53-56 777-83 (1992) https://doi.org/10.1016/0167-2738(92)90254-M
  6. P. Huang, A. Horky, and A. Petrie, 'Interfacial Reaction between Nickel Oxide and Lanthanum Gallate during Sintering and Its Effect on Conductivity,' J. Am. Ceram. Soc., 82 [9] 2402-06 (1999) https://doi.org/10.1111/j.1151-2916.1999.tb02096.x
  7. K. Huang, R. Tichy, and J. B. Goodenough, 'Superior Perovskite Oxide-Ion Conductor Strontium- and Magnesium Doped $LaGaO_3$ II, AC Impedance Spectroscopy,' J. Am. Ceram. Soc., 81 [10] 2576-80 (1998) https://doi.org/10.1111/j.1151-2916.1998.tb02663.x
  8. Z. Bi, B. Yi, Z. Wang, Y. Dong, H. Wu, Y. She, and M. Cheng, 'A High-Performance Anode-Supported SOFC with LDC-LSGM Bilayer Electrolytes,' Electrochemical and Solid-State Letters, 7 [5] 105-07 (2004)
  9. K. Huang and J. B. Goodenough, 'A Solid Oxide Fuel Cell Based on Sr- and Mg-Doped $LaGaO_3$ Electrolyte: The Role of a Rare-Earth Oxide Buffer,' J. Alloys and Compounds, 303-304 454-64 (2000) https://doi.org/10.1016/S0925-8388(00)00626-5
  10. K. N. Kim, J. H. Moon, J. W. Son, J. S. Kim, H. W. Lee, J. H. Lee, and B. K. Kim, 'Interfacial Stability between Anode and Electrolyte of LSGM-Based SOFCs(in Korean),' J. Kor. Ceram. Soc., 42 [7] 509-15 (2005) https://doi.org/10.4191/KCERS.2005.42.7.509
  11. K. N. Kim, J. H. Moon, J. W. Son, J. S. Kim, H. W. Lee, J. H. Lee, and B. K. Kim, 'Introduction of a Buffering Layer for the Interfacial Stability of LSGM-Based SOFCs(in Korean),' J. Kor. Ceram. Soc., in press
  12. T. Ishihara, H. Matsuda, and Y. Takita, 'Effects of Rare Earth Cations Doped for La Site on the Oxide Ionic Conductivity of $LaGaO_3$-Based Perovskite Type Oxide,' Solid State Ionics, 79 147-51 (1995) https://doi.org/10.1016/0167-2738(95)00054-A
  13. K. Yamaji, T. Horita, M. Ishikawa, N. Sakai, H. Yokokawa, and M. Dokiya, 'Some Characteristics for Fabrication of $LaGaO_3$-Based Electrolyte,' Proceeding of the Fifth International Symposium on Solid-Oxide Fuel Cells, 1041-50 (1997)
  14. J.-H. Kim and H.-I. Yoo, 'Partial Electronic Conductivity and Electrolytic Domain of $La_{0.9}Sr_{0.1}Ga_{0.8}Mg_{0.2}O_{3-\delta}$' Solid State Ionics, 140 105-13 (2001) https://doi.org/10.1016/S0167-2738(01)00687-7
  15. X. Zhang, S. Ohara, R. Marie, K. Mukai, T. Fukui, H. Yoshida, M. Nishimura, T. Inagaki, and K. Miura, 'Ni-SDC Cermet Anode for Medium-Temperature Solid Oxide Fuel Cell with Lanthanum Gallate Electrolyte,' J. Power Sources, 83 170-77 (1999) https://doi.org/10.1016/S0378-7753(99)00293-1
  16. Y. Matsuzaki and I. Yasuda, 'Electrochemical Properties of Reduced-Temperature SOFCs with Mixed Ionic-Electronic Conductors in Electrodes and/or Interlayers,' Solid State Ionics, 152-153 463-68 (2002) https://doi.org/10.1016/S0167-2738(02)00373-9
  17. K. Huang, M. Feng, and J. B. Goodenough, 'Electrode Performance Test on Single Ceramic Fuel Cells Using as Electrolyte Sr- and Mg-Doped $LaGaO_3$,' J. Electrochem. Soc., 144 [10] 3620-23 (1997) https://doi.org/10.1149/1.1838058
  18. R. Marie, S. Ohara, T. Fukui, H. Yoshida, M. Nishimura, T. Inagaki, and K. Miura, 'Solid Oxide Fuel Cells with Doped Lanthanum Gallate Electrolyte and $LaSrCoO_3$ Cathode, and Ni-Samaria-Doped Ceria Cermet Anode,' J. Electrochemical Soc., 146 [6] 2006-10 (1999) https://doi.org/10.1149/1.1391882
  19. J. Larminie and A. Dicks, 'Fuel Cell Systems Explained,' pp. 1-59, Plenum Press, New York, 1993
  20. M. C. Williams, 'Fuel Cell Handbook,' Sixth Edition, 37-52, EG&G Technical Services. Inc., West Virginia, 2002
  21. F. Zhao and A. V. Virkar, 'Dependence of Polarization in Anode-Supported Solid Oxide Fuel Cells on Various Cell Parameters,' J. Power Sources, 141 [1] 79-95 (2005) https://doi.org/10.1016/j.jpowsour.2004.08.057