DOI QR코드

DOI QR Code

Effects of Systematic Variation Application of Fe, Mn, Cu, and Zn on the Dry Matter Yields of Orcharograss and White Clover

Fe, Mn, Cu 및 Zn의 Systematic Variation 시비가 Orchardgrass 및 White Clover의 건물수량에 미치는 영향

  • 정연규 (순천대학교 농업생명과학대학)
  • Published : 2004.09.01

Abstract

This pot experiment was conducted to investigate the effects of systematic variation application of Fe, Mn, Cu, and Zn on forage performance of orchardgrass and white clover. The treatments of systematic variation were 0/100, 25/75, 50/50, 75/25, and $100/0\%$ in the Fe/Cu(trial-1), Mn/Zn(trial-2), and Fe+Cu/Mn+Zn(trial-3), respectively. The treatments of Fe/Mn/Cu/Zn(trial-4) were composed of $70\%$ in main element and $10\%$ in other 3 elements, respectively. 1. By the systematic variations of Fe, Mn, Cu, and Zn, the yields were more significantly influenced in white clover than in orchardgrass. In addition, the yields of white clover were closely correlated to the trends of root/nodule growth and flowering. In the Fe/Cu trial, the relatively high yields were obtained at the $100/0\%$ in orchardgrass and at the $75/25\%$ in white clover. The yields of white clover were more negatively influenced by the 100/0(Cu control) than by the 0/100(Fe control). The yields of orchardgrass, however, tended to be opposite to the above trends. 2. In the Mn/Zn trial, both forages showed generally high yields at the high ratios of Mn/Zn. Compared with orchardgrass, the yields of white clover were greatly decreased by the Mn-deficiency(low ratio of Mn/Zn). The effects of Zn on forage yields, however, were not recognized. 3. In the Fe+Cu/Mn+Zn trial, the yields of orchardgrass tended to be slightly different among the treatments. The yields of white clover, however, were relatively' high at the 75/25, and showed a severe decrease at the 100/0 in the 2nd half cuts. In the Fe/Mn/Cu/Zn trial, the yields of white clover tended to be relatively high at the Cu and Zn treatments. It was likely to be caused by the balanced Fe/Mn ratio.

Orchardgrass 및 white clover에서 미량요소 Fe, Mn, Cu 및 Zn의 systematic variation 시비가 목초의 생육, 개화, 수량 및 양분 함량 등에 미치는 영향 등을 구명하였다. 다량요소 양분을 동일량 시비한 조건에서 시험군-1(Fe/Cu), 시험군-2(Mn/Zn), 시험군-3(Fe+Cu/Mn+Zn)의 처리내용은 시험군별 처리양분의 총 시비량($100\%$)을 systematic variation 방법으로 각각 0/100, 25/75, 50/50, 75/25, $100/0\%$ 비율로 나누어 시비처리 하였고, 시험군-4(Fe/Mn/Cu/Zn)에서는 각 기준양분 $70\%$, 기타 양분은 각각 $10\%$(합계 $100\%$) 비율로 시비처리 하였다. 1. 일반적으로 처리별 수량에 미치는 영향은 초종간 큰 차이를 보였으며 white clover는 orchardgrass 보다 더 크게 영향을 받았다. white clover의 처리별 수량변화는 뿌리/근류의 생육 및 개화특성 등과 연관성을 보였다(I보). 2. Fe/Cu 비율시험에서 orchardgrass의 수량은 $100/0\%$ 처리에서, white clover는 75/25 처리에서 다소 높은 수량을 보였다. 또한 white clover의 양호한 생육과 수량은 Cu 비율에 더 크게 영향을 받았고 orchardgrass는 Fe 비율에 더 영향을 받는 경향 이였다. 3. Mn/Zn 비율시험에서 두 초종 공히 높은 Mn 비율에서 양호한 수량을 보였다. 그러나 Mn-결핍조건에서는 white clover가 orchardgrass보다 상대적으로 더 수량감소를 보였다. 이에 비해서 Zn-함량의 변화와 이의 수량에 미치는 영향은 경미하였다. 4. Fe+Cu/Mn+Zn 비율시험에서 orchardgrass는 처리간 수량 차이가 경미하였다. white clover는 orchardgrass에 비해서 처리별 수량차이가 크게 나타났다. 75/25 처리에서 높은 수량을 보였으며 100/0 처리에서는 후반기에 심한 수량감소를 나타냈다. Fe/Mn/Cu/Zn 비율시험에서 white clover는 Cu와 Zn 처리에서 다소 양호한 수량을 보였고 이는 아마도 균형된 Fe/Mn 비율과도 연관된 것으로 보였다.

Keywords

References

  1. Bergmann, W. and P. Neubert. 1976. Pflanzendiagnose und Pflanzenanalyse. VEB Gustav Fischer Verlag, Jena
  2. Bolle Jones, E.W. 1957. Copper, its effects on the growth and composition of the rubber plant. Plant and Soil, 4: 160-178
  3. Bond, G. and E.J. Hewitt. 1967. The significance of copper for N-fixation in nodulated Alnus and Casuarina plants. Plant and Soil, 27:447-449 https://doi.org/10.1007/BF01376337
  4. Brown, J.C., R.S. Holmes and L.O. Tiffin. 1959. Hypotheses concerning iron chlorosis. Soil Sci. Soc. Am. Proc. 23:231-234 https://doi.org/10.2136/sssaj1959.03615995002300030023x
  5. Bussler, W. 1958. Manganmangelsymptome bei hoeheren Pflanzen. Z. f. Pflanzenernaehr., Dueng., Bodenkd. 81:225-242 https://doi.org/10.1002/jpln.19580810305
  6. Cumbus I.P., D.J. Hornsey and L.W. Robinson. 1977. The influence of P, Zn and Mn on absorption and translocation of Fe in watercress. Plant and Soil. 48:651-660 https://doi.org/10.1007/BF00145775
  7. Finck, A. 1969. Pflanzenemaehrung in Stickworten, 1. Aufl. Verlag Ferdinand Hirt, Kiel
  8. Finger, H. 1951. Die Wirkung von Bor, Mangan, Kupfer und steigenden Kalkgaben auf rohhumushaltigem Heidesandboden. Landw. Forschung, 3:89-112
  9. Gupta U.C. and E.W. Chipman. 1976. Influence of iron and pH on the yield and iron, manganese, zinc, and nitrogen concentration of carrots grown on sphagnum peat soil. Plant and Soil. 44:559-566 https://doi.org/10.1007/BF00011375
  10. Hewitt, E.J., E.W. Bolle-Jones and P. Miles. 1954. The production of copper, zinc and molybdenum deficiencies in crop plants grown in sand culture with special reference to some effects of water supply and seed reserve. Plant and Soil, 5:205-222 https://doi.org/10.1007/BF01395896
  11. Hiatt, A.J. and J.L. Ragland. 1963. Manganese toxicity of burley tobacco. Agron. J. 55:47-49 https://doi.org/10.2134/agronj1963.00021962005500010017x
  12. Kirsch, R.K., M.E. Harward and R.G. Petersen. 1960. Interrelationship among iron, manganese, and molybdenum in the growth and nutrition of tomatoes grown in culture solution. Plant and Soil. 12:259-275 https://doi.org/10.1007/BF01343653
  13. Moraghan, J.T. and T.J. Freeman. 1978. Influence of FeEDDHA on growth and manganese accumulation in flax. Soil Sci Soc. Am. Proc. 42; 455-460 https://doi.org/10.2136/sssaj1978.03615995004200030016x
  14. Nieschlag, F. 1966. Versuche ueber den Einfluss einiger Spurenelemente auf die Leistung von Milchviehweiden. Landw. Forschung. 19:191-195
  15. Osullivan, M. 1969. Iron metabolism of grasses. I. Effect of iron supply on some inorganic and organic constituents. Plant and Soil. 31:451-462 https://doi.org/10.1007/BF01373816
  16. Rahimi, A. 1972. Kupfermangelsymptome und ihre Entwicklung bei hoeheren Pflanzen. Dissertation, D83, Nr. 14, TU Berlin
  17. Rahimi, A. and W. Bussler. 1973. Der Einfluss unterschiedlicher Zink-Gaben auf die Entwicklung von Mais. Z. f. Pflanzenernaehr., Dueng., Bodenkd. 135:267-283 https://doi.org/10.1002/jpln.19731350311
  18. Riekels, J.W. and J.C. Lingle 1966. Iron uptake and translocation by tomato plants as influenced by root temperature and manganese nutrition. Plant Physiol. 41:1095-1101 https://doi.org/10.1104/pp.41.7.1095
  19. Sommers, I.I. and J.W. Shive. 1942. The ironmanganese relation in the plant metabolism. Plant Physiol. 17:582-602 https://doi.org/10.1104/pp.17.4.582
  20. Vose, P.B. and D.G. Jones. 1963. The interaction of manganese and calcium on nodulation and growth in varieties of Trifolium repens. Plant and Soil, 18:372-385 https://doi.org/10.1007/BF01347236
  21. Woodhouse, W.W. Jr. 1964. Nutrient deficiencies in forage grasses. In; Hunger signs in crops, 3rd edit. David Mackay Comp., New York. 181-218

Cited by

  1. Effects of Systematic Variation Application of Fe, Mn, Cu and Zn on these Contents in Orchardgrass and White Clover vol.24, pp.4, 2004, https://doi.org/10.5333/KGFS.2004.24.4.271