DOI QR코드

DOI QR Code

Effects of Systematic Variation Application of Fe, Mn, Cu, and Zn on the Contents of N-compounds(Crude/Pure Protein) in Orchardgrass and White Clover

Fe, Mn, Cu 및 Zn의 Systematic Variation 시비가 Orchardgrass 및 White Clover의 질소화합물(조/순단백질) 함량에 미치는 영향

  • 정연규 (순천대학교 농업생명과학대학)
  • Published : 2004.09.01

Abstract

This pot experiment was conducted to investigate the effects of systematic variation application of Fe, Mn, Cu, and Zn on forage performance of orchardgrass and white clover. The treatments of systematic variation were 0/100, 25/75, 50/50. 75/25, and $100/0\%$ in the Fe/Cu(trial-1). Mn/Zn(trial-2), and Fe+Cu/Mn+Zn(trial-3), respectively The treatments of Fe/Mn/Cu/Zn(trial-4) were composed of $70\%$ for main element and $10\%$ for other 3 elements, respectively. 1. The contents of N-compounds in forages tended to be in inverse proportion to the yields. In the Mn/Zn trial, the 0/l00 to white clover resulted in the relatively high contents of soluble N-compounds and low ratio of pure protein/soluble N-compounds in company with a severe yield decrease. 2. In the Fe+Cu/Mn+Zn trial, the 0/100 and 100/0 resulted in the somewhat high contents of N-compounds in white clover. It was likely to be caused by the concentration effect derived from yield decrease. In addition, the 100/0 resulted in the relatively high content of soluble N-compounds and low ratio of pure protein/soluble N-compounds. The protein synthesis in white clover was likely to be negatively influenced by the 100/0. 3. In the Fe/Mn/Cu/Zn trial, white clover showed the low contents of crude and pure protein at the 1st cut. It was likely to be caused by the unbalanced mutual ratios derived from the high application levels of each single element. 4. In white clover at the 5th cut, the 0/100 of Mn/Zn and 100/0 of Fe+Cu/Mn+Zn resulted in the relatively high content of K. It was likely to be caused by the concentration effect derived from yield decrease.

Orchardgrass 및 white clover에서 미량요소 Fe, Mn, Cu 및 Zn의 systematic variation 시비가 목초의 생육, 개화, 수량 및, 양분 함량 등에 미치는 영향 등을 구명하였다. 다량요소 양분을 동일 양 시비한 조건에서 Fe/Cu(시험군-1), Mn/Zn(시험군-2) 및 Fe+Cu/Mn+Zn(시험군-3)의 처리는 systematic variation 방법으로 시험군별 총 시비량을 각각 0/100, 25/75, 50/50, 75/25, $100/0\%$ 비율로 나누어 시비하였고, Fe/Mn/Cu/Zn(시험군-4)에서는 각 기준처리 $70\%$, 기타 처리는 각각 $10\%$(합계 $100\%$) 비율로 시비하였다. 1. N-화합물들의 함량은 일반적으로 수량과 반비례적인 경향을 보였다. Mn/Zn 비율시험에서 white clover는 0/100 처리에서 큰 수량감소와 더불어 수용성 N-화합물 함량이 다소 높았고(특히 3차 예취), 또한 순단백질/수용성 N-화합물 비율은 낮았다. 2. Fe+Cu/Mn+Zn 비율시험에서 white clover는 0/100과 100/0 처리에서 이들 함량들이 다소 높았다. 이는 큰 수량감소와 이와 연관된 농축효과에 기인된 것으로 보였다. 또한 white clover는 5차 예취 시 100/0 처리에서 큰 수량 감소와 더불어 수용성 N-화합물 함량이 상대적으로 더 높아졌다. 이 결과 순단백질/수용성 N-화합물 비율이 더 낮아졌다. 100/0 처리는 white clover의 단백질 함성 생리대사에 부정적인 영향을 준 것으로 보였다. 3. Fe/Mn/Cu/Zn 비율시험에서 white clover는 특히 1차 예취에서 조단백질의 함량이 매우 낮았다. 이는 순단백질 함량이 상대적으로 크게 낮은 것과 연관되었고, 아마도 단일 양분의 다량 시비비율에 따른 이들 양분간 불균형에 따른 것으로 보였다. 4. 처리별 K, Ca 및 Mg의 함량은 일반적으로 차이가 경미하였으나 5차 예취에서 white clover는 Mn/Zn=0/100과 Fe+Cu/Mn+Zn=100/0처리에서 K-함량이 상대적으로 높은 수준을 보였다. 이는 Mn-결핍에 따른 white clover의 수량감소와 이와 연관된 농축효과에 기인된 것으로 보였다.

Keywords

References

  1. Bergmann, W. and P. Neubert. 1976. Pflanzendiagnose und Pflanzenanalyse. VEB Gustav Fischer Verlag, Jena
  2. Bolle-Jones, E.W. 1957. Copper, its effects on the growth and composition of the rubber plant. Plant and Soil, 4:160-178
  3. Bond, G. and E.J. Hewitt. 1967. The significance of copper for N-fixation in nodulated Alnus and Casuarina plants. Plant and Soil, 27:447-449 https://doi.org/10.1007/BF01376337
  4. Brown, J.C., R.S. Holmes and L.O. Tiffin. 1959. Hypotheses concerning iron chlorosis. Soil Sci. Soc. Am. Proc. 23:231-234 https://doi.org/10.2136/sssaj1959.03615995002300030023x
  5. Bussler, W. 1958. Manganmangelsymptome bei hoeheren Pflanzen. Z. f. Pflanzenernaehr., Dueng., Bodenkd. 81:225-242 https://doi.org/10.1002/jpln.19580810305
  6. Cumbus I.P., D.J. Hornsey and L.W. Robinson. 1977. The influence of P, Zn and Mn on absorption and translocation of Fe in watercress. Plant and Soil. 48:651-660 https://doi.org/10.1007/BF00145775
  7. Finck, A. 1969. Pflanzenernaehrung in Stickworten, 1. Aufl. Verlag Ferdinand Hirt, Kiel
  8. Finger, H. 1951. Die Wirkung von Bor, Mangan, Kupfer und steigenden Kalkgaben auf rohhumushaltigem Heidesandboden. Landw. Forschung, 3: 89-112
  9. Gupta U.C. and E.W. Chipman. 1976. Influence of iron and pH on the yield and iron, manganese, zinc, and nitrogen concentration of carrots grown on sphagnum peat soil. Plant and Soil. 44:559-566 https://doi.org/10.1007/BF00011375
  10. Hewitt, E.J., E.W. Bolle-Jones and P. Miles. 1954. The production of copper, zinc and molybdenum deficiencies in crop plants grown in sand culture with special reference to some effects of water supply and seed reserve. Plant and Soil, 5:205-222 https://doi.org/10.1007/BF01395896
  11. Hiatt, A.J. and J.L. Ragland. 1963. Manganese toxicity of burley tobacco. Agron. J. 55:47-49 https://doi.org/10.2134/agronj1963.00021962005500010017x
  12. Kirsch, R.K., M.E. Harward and R.G. Petersen. 1960. Interrelationship among iron, manganese, and molybdenum in the growth and nutrition of tornatoes grown in culture solution. Plant and Soil. 12:259-275 https://doi.org/10.1007/BF01343653
  13. Moraghan, J.T. and T.J. Freeman. 1978. Influence of FeEDDHA on growth and manganese accumulation in flax. Soil Sci Soc. Am. Proc. 42: 455-460 https://doi.org/10.2136/sssaj1978.03615995004200030016x
  14. Nieschlag, F. 1966. Versuche ueber den Einfluss einiger Spurenelemente auf die Leistung von Milchviehweiden. Landw. Forschung. 19:191-195
  15. Osullivan, M. 1969. Iron metabolism of grasses. I. Effect of iron supply on some inorganic and organic constituents. Plant and Soil. 31:451-462 https://doi.org/10.1007/BF01373816
  16. Rahimi, A. 1972. Kupfermangelsymptome und ihre Entwicklung bei hoeheren Pflanzen. Dissertation, D83, Nr. 14, TU Berlin
  17. Rahimi, A. and W. Bussler. 1973. Der Einfluss unterschiedlicher Zink-Gaben auf die Entwicklung von Mais. Z. f. Pflanzenernaehr., Dueng., Bodenkd. 135:267-283 https://doi.org/10.1002/jpln.19731350311
  18. Riekels, J.W. and J.C. Lingle 1966. Iron uptake and translocation by tomato plants as influenced by root temperature and manganese nutrition. Plant Physiol. 41: 1095-1101 https://doi.org/10.1104/pp.41.7.1095
  19. Sommers, I.I. and J.W. Shive. 1942. The iron-manganese relation in the plant metabolism. Plant Physiol. 17:582-602 https://doi.org/10.1104/pp.17.4.582
  20. Vose, P.B. and D.G. Jones. 1963. The interaction of manganese and calcium on nodulation and growth in varieties of Trifolium repens. Plant and Soil, 18:372-385 https://doi.org/10.1007/BF01347236
  21. Woodhouse, W.W. Jr. 1964. Nutrient deficiencies in forage grasses. In; Hunger signs in crops, 3rd edit. David Mackay Comp., New York. 181-218

Cited by

  1. Effects of Systematic Variation Application of Fe, Mn, Cu and Zn on these Contents in Orchardgrass and White Clover vol.24, pp.4, 2004, https://doi.org/10.5333/KGFS.2004.24.4.271