A study on the mechanism of NO-induced apoptosis in human gingival fibroblast

사람 치은 섬유아세포에서 산화질소 유도 세포고사에 대한 연구

  • Kim, Kang-Moon (Dept. of Periodontology, Chonnam National University) ;
  • Chung, Hyun-Ju (Dept. of Periodontology, College of Dentistry, Chonnam National University, Dental Science Research Institute, Chonnam National University) ;
  • Kim, Won-Jae (Dept. of Oral Phsiology, College of Dentistry, Chonnam National University, Dental Science Research Institute, Chonnam National University)
  • 김강문 (전남대학교 치과대학 치주과학교실) ;
  • 정현주 (전남대학교 치과대학 치주과학교실, 전남대학교 치의학연구소) ;
  • 김원재 (전남대학교 치과대학 구강생리학교실, 전남대학교 치의학연구소)
  • Published : 2004.12.31

Abstract

산화질소는 생리적 농도에서 세포내 신호전달자로 작용하지만 높은 농도에서는 세포독성을 일으킨다. 최근 치은 섬유아세포와 치주인대 섬유아세포는 산화질소 합성효소를 가지고 있고 세균의 lipopolysaccharide나 cytokine에 의해 대량의 높은 농도의 산화질소가 합성된다는 보고가 있음에도 지금까지 치은 조직에서 산화질소의 세포독성에 대한 연구는 아직 이루어 지지않고 있다. 본 연구는 사람의 치은 섬유아세포에서, 산화질소유도세포 고사기전을 밝히는데 목적이 있다. 세포 생장력은 MTT 방법으로 측정하였고, 세포의 형태적 변화는 Diff-Quick 염색법으로 조사하였다. Bcl-2 famly와 Fas 발현 정도는 RT-PCR 방법에 의해 확인하였으며, caspase-3, -8 와 -9의 활성은 spectrophotometer로 reactive oxygen species (ROS)는 형광분광계에 의해 측정되었다. 미토콘드리아에서 세포질로 분비된 cytochrome c는 western blot으로 조사하였다. 산화질소 유리제인 sodium nitroprusside (SNP) 처리는 사람 섬유아세포의 생존률을 시간과 농도 의존적으로 감소시켰고, 세포용적축소, 염색사 용축, DNA 절편화를 일으켰다. 또한, SNP 처리로 미토콘드리아에서 세포질로 유리되는 cytochrome c 양이 증가되었고, caspase-9 과 caspase-3 의 활성이 증가되었다. 한편, SNP 처리에 의해 death receptor 구성요소인 Fas 발현이 증가되었고, caspase-8의 활성이 증가되었다. Bcl-2 family 에 대한 RT-PCR 분석결과, 세포고사를 억제하는 Bcl-2 발현은 감소되었으나 세포고사를 자극하는 Bax와 Bid의 발현은 증가되었다. Soluble guanylate cyclase 억제제인 ODQ는 SNP에 의한 세포 생존율 감소를 차단하지 못했다. 따라서, 본 실험의 결과들은 사람 섬유아세포에서 산화질소유도 세포고사에 Bcl-2 family나 ROS가 매개하는 미토콘드리아 의존 및 death receptor 의존 세포고사기전이 관여함을 시사하였다.

Keywords

References

  1. Dahigh F., Borghaei R.C., Thornton R.D. and Bee J.H. Human gingival fibroblasts produced nitric oxide in response to proinflammatory cytokines. J. Periodontal 2002;73:392-400
  2. Kendall H.K., Haase H.R, Li H., Xiao Y. and Bartold P.M. Nitricoxide synthase type-II is synthesized by human gingival and cultured human gingival fibroblasts. J. Periodontal Res. 2000;35:194-200
  3. Gross S.S. and Wolin M.S. Nitric oxide: pathophysiological mechanisms. Annu. Rev. Physiol 1995;57:737-69
  4. Dawson V.L. and Dawson T.M. Nitric oxide neurotoxicity. J Chem Neuroanat. 1996;10:179-90
  5. Roth J.A., Feng L., Walowitz J. and Browne R. W. Manganese -induced rat pheochromocytoma (HGF) cell death is independent of caspase activation. J Neurosci Res 2000;61:162-71
  6. Adams J.M. and Cory S. The Bcl-2 protein family: arbiters of cell survival. Science 1998;281:1322-6
  7. Tsujimoto Y. and Shimizu S. Bcl-2: Life-or-death switch. FEBS Lett. 2000;466:6-10
  8. Beer R, Frenz G., Schopf M., Reindl M., Zelger B., Schmutzhard E., Poewe W. and Kampfl A. Expression of Fas and Fas ligand after experimental traumatic brain injury in the rat. J Cereb Blood Flow Metab 2000;20:669-77
  9. Cheng E.H., Nicholas J., Bellows D.S., Hayward G.S., Guo H.G., Reitz M.S. and Hardwick J.M. A Bcl-2 homolog encoded by kaposi sarcoma-associated virus, human herpesvirus 8, inhibits apoptosis but does not heterodimerize with Bax or Bak. Proc. Natl. Acad, Sci. USA 1997;94:690-4
  10. Susilowati H., Santoso A. L., Barid I. and Sosroseno W. Rat periodontal fibroblast responses to bacterial lipopolysacchraide in vitro. J Microbiol Immunol Infect 2002;35:203-6
  11. Boulares A.H., Zoltoski A.J., Sherif Z.A., Yakovler A. and Smulson M.E. Roles of DNA fragmentation factor and poly(ADP-ribose) poly merase-1 in sensitization of fibroblasts to tumor necrosis factor-induced apoptosis. Biochem Biophys Res Commun 2002;290:796-801
  12. Fujimura M., Morita-Fujimura Noshita N., Sugawara T., Kawase M. and Chan P.H. The cytosolic antioxidant copper/zinc-superoxide dismutase prevents the early release of mitochondrial cytochrome c in ischemic brain after transient focal cerebral in mice. J Neurosci 2000;20:2817-24
  13. Oppenheim R.W. Cell death during development of the nervous system. Annu. Rev. Neurosci. 1991;14:453-501
  14. Brown G.C. Nitric oxide and mitochondrial respiration. Biochim. Biophys. Acta. 1999;1411:351-69
  15. Yuyama K., Yamamoto H., Nishozaki I., Kato T., Sora I. and Yamamoto T. Caspase-independent cell death by low concentrations of nitric oxide in PC12 cells: Involvement of cytochrome c oxidase inhibition and the production of reactive oxygen species in mitochondria. J neurosci Res 2003;73:351-63
  16. Fleury C., Mignotte B. and Vayssiere J.L. Mitochondrial reactive oxygen species in cell death signaling. Biochimie 2002:84:131-41
  17. Herrera B., Alvarez A.M., Sanchez A., Fernandez M., Roncero C., Benito M. and Fabregat I. Reactiveoxygen species (ROS) mediates the mitochondrial-dependent apoptosis induced by transforming growth factor (beta) in fetal hepatocytes. FASEB J. 2001;15:741-51
  18. Earnshaw W.C., Marins L.M. and Kaufmann S.H. Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu. Rev. Biochem. 1999;68:383-424
  19. Bal-Price A. and Brown G. C. Nitric-oxideinduced necrosis and apoptosis in PC12 cells mediated by mitochondria. J Neurochem 2000;75:1455-64
  20. Leist M., Single B., Naumann H., Fava E., Simon B., Kuhnle S. and Nicotera P. Nitric oxide inhibits execution of apoptosis at two distinct ATP-dependent steps upstream and downstream of mitochondrial cytochrome c release. Biochem. Biophys. Res. Commun. 1999;258:215-21
  21. Facchinetti F., Furegato S., Terrazzino S. and Leon A. $H_{2}O_{2}$ induces upregulation of Fas and Fas ligand expression in NGF-differentiated HGF cells: Modulation by cAMP. J Neurosci Res 2002;69:178-88
  22. Gottlieb E., Vander Heiden M.G. and Thompson C.B. Bcl-xl prevents the initial decrease in mitochondrial membrane potential and subsequent reactive oxygen species production during tumor necrosis factor alpha-induced apoptosis. Mol Cell Biol 2000;20:5680-9
  23. Howard S., Bottino C., Brooke S., Cheng E., Giffard R. G. and Sapolsky R. Neuroprotective effects of Bcl-2 overexpression in hippocampal cultures: interactions with pathways of oxidative damage, J Neurochem 2002;83:914-23
  24. Starkov A., Polster B. and Fiskum G. Regulation of hydrogen peroxide production by brain mitochondria by calcium and Bax. J Neurochem 2002;83:220-8
  25. Hemish J., Nakaya N., Mittal V. and Enikolopov G. Nitric oxide activates diverse signaling pathways to regulate gene expression, J Biol Chem 2003;278:42321-9
  26. Huerta-Yepez S., Vega M., Jazirehi A., Garban H., Hongo F., Cheng G. and Bonavida B. Nitric oxide sensitizes prostate carcinoma cell lines to TRAIL-mediated apoptosis via inactivation of $NF-{\kappa}B$ and inhibition of Bcl-xL expression. Oncogene 2004;23:4993-5003