Historical Inspection of the Bieberbach Conjecture and the Lu Qi-Keng Conjecture

비버바흐 추측과 루퀴켕 추측에 대한 역사적 고찰

  • Published : 2004.08.01

Abstract

In this paper, we consider two conjectures, the Bieberbach Conjecture that was proved true and the Lu Qi-Keng Conjecture that was proved not true. We inspect them historically and introduce the interesting results. From them we find that the deep theory of mathematics comes from continuous conjectures.

이 논문에서는 두 추측, 사실로 판명된 비버바흐 추측과 올지 않다고 판명된 루퀴켕 추측을 다루었다. 두 추측을 역사적으로 고찰하고 흥미로운 결과를 소개한다. 이들로부터 수학의 심오한 이론은 연속되는 추측의 결과임을 발견한다.

References

  1. 복수함수론 이석영
  2. 수학 새로운 황금시대 제2판 Devlin, K(저);허민(역)
  3. Proc. Amer. Math. Soc. v.97 Counterexample to Lu Qi-Keng conjecture Boas, H.
  4. Proc. Amer. Math. Soc. v.124 The Lu Qi-Keng Conjecture fails generically Boas, H.
  5. J. Korean. Math. Soc. v.37 Lu Qi-Keng conjecture Boas, H.
  6. Proc. Amer. Math. Soc. v.127 The Bergman kernel function: explicit formulas and zeroes Boas, H.;Fu, Siqi;Straube, E.J.
  7. Notices Amer. Math. Soc. v.32 The Bieberbach conjecture: Reprospective FitzGerald, C.
  8. The Mathematical Intelligencer v.8 The last 100 days of the Bieberbach Conjecture Fomenko, O.M.
  9. Recent Developments in Several Complex Variables Stability properties of the Bergman kernel and curvature properties of bounded domains Greene, R.E.;Krantz, S.G.
  10. Function Theory of Several Complex Variables (2nd ed.) Krantz, S.G.
  11. Arch. Math. v.71 The Lu Qi-Keng conjecture fails for strongly convex algebraic domains Pflug, P.;Youssfi, E.H.
  12. Proc. Amer. Math. Soc. v.21 On the zeroes of the Bergman kernel function in doubly connected domains Rosenthal, P.
  13. Proc. Amer. Math. Soc. v.98 The invariant distance in the theory of pseudoconformal transformations and the Lu Qi-keng conjecture Skwarczynski, M.
  14. Proc. Amer. Math. Soc. v.59 The invariant distance in the theory of pseudoconformal transformations and the Lu Qi-keng conjecture Suita, N.;Yamada, A.
  15. Proc. Amer. Math. Soc. v.128 The Lu Qi-Keng conjecture fails for strongly convex algebraic complete Reinhardt domins in Cn(n≥3) Viet Anh, Nguyen
  16. 복수함수론 이석영
  17. 수학: 새로운 황금시대 Devlin, K.(저);허민(역)
  18. v.97 Counterexample to Lu Qi-Keng conjecture Boas, H.
  19. Proc. Amer. Math. Soc. v.124 The Lu Qi-Keng Conjecture fails generically Boas, H.
  20. J. Korean. Math. Soc. v.37 Lu Qi-Keng conjecture Boas, H.
  21. Proc. Amer. Math. Soc. v.127 The Bergman kernel function: explicit formulas and zeroes Boas, H.;Fu, Siqi;Straube, E.J.
  22. Notices Amer. Math. Soc. v.32 The Bieberbach conjecture: Reprospective FitzGerald, C.
  23. The Mathematical Intelligencer v.8 The last 100 days of the Bieberbach Conjecture Fomenko, O.M.
  24. Recent Developments in Several Complex Variables Stability properties of the Bergman kernel and curvature properties of bounded domains Greene, R.E.;Krantz, S.G.
  25. Function Theory of Several Complex Variables(2nd ed.) Krantz, S.G.
  26. Arch. Math. v.71 The Lu Qi-Keng conjecture fails for strongly convex algebraic domains Pflug, P.;Youssfi, E.H.
  27. Proc. Amer. Math. Soc. v.21 On the zeroes of the Bergman kernel function in doubly-connected domains Rosenthal, P.
  28. Proc. Amer. Math. Soc. v.98 The invariant distance in the theory of pseudoconformal transformations and the Lu Qi-keng conjecture Skwarczynski, M.
  29. Proc. Amer. Math. Soc. v.59 On the Lu Qi-Keng conjecture Suita, N.;Yamada, A.
  30. Proc. Amer. Math. Soc. v.128 The Lu Qi-Keng conjecture fails for strongly convex algebraic complete Reinhardt domains in $C^n$(n≥3) Viet Anh, Nguyen