The Production of Xylitol by Enzymatic Hydrolysis of Agricultural Wastes

  • Tran, Lien-Ha (United Graduate School of Agricultural Science, Gifu University, Institute of Biological-Food Technology, Hanoi University) ;
  • Masanori Yogo (United Graduate School of Agricultural Science, Gifu University) ;
  • Hiroshi Ojima (United Graduate School of Agricultural Science, Gifu University) ;
  • Osamu Idota (United Graduate School of Agricultural Science, Gifu University) ;
  • Keiichi Kawai (Faculty of Applied Biological Science, Gifu University) ;
  • Tohru Suzuki (Life Science Research Center, Gifu University) ;
  • Kazuhiro Takamizawa (Faculty of Applied Biological Science, Gifu University)
  • Published : 2004.06.01

Abstract

Agricultural waste products, beech wood and walnut shells, were hydrolyzed at 40$^{\circ}C$ using mixed crude enzymes produced by Penicillium sp. AHT-1 and Rhizomucor pusillus HHT-1. D-xylose, 4.1 g and 15.1 g was produced from the hydrolysis of 100 g of beech wood and walnut shells, respectively. For xylitol production, Candida tropicalis IFO0618 and the waste product hydrolyzed solutions were used. The effects on xylitol production, of adding glucose as a NADPH source, D-xylose and yeast extract, were examined. Finally, a 50% yield of xylitol was obtained by using the beech wood hydrolyzed solution with the addition of 1% yeast extract and 1% glucose at an initial concentration.

Keywords

References

  1. Dutsch. Zahnarztl. v.42 Plaque formation and plaque inhibition Rolla,G.;A.A.Schele;S.Assev
  2. Sugar in nutrition: Xylitol as a therapeutic agent in glucose-6 phosphate dehydrogenase deficiency (8ed.) Van Eys,J.;Y.M.Wang;S.Chan;S.Tanphaihitr;S.M.King
  3. Food Technol. v.42 Xylitol in sugar-free confections Pepper,T.;P.M.Olinger
  4. FAO production yearbook Food and agriculture organization of the United Nations FAO
  5. J. Ferment. Bioeng. v.86 Microbial conversion of D-xylose to xylitol Winkelhausen,E.;S.Kuzmanova https://doi.org/10.1016/S0922-338X(98)80026-3
  6. Can. J. Microbiol. v.47 Physicochemical properties of a novel α-L-arabinofuranosidase from Rhizomucor pusillus HHT-1 Rahman,A.K.M.S.;S.Kawamura;M.Hatsu;M.M.Hoq;K.Takamizawa
  7. Can. J. Microbiol. v.49 A role of xylanase, α-L-arabinofurnosidase, and xylosidase in xylan degradation Rahman,A.K.M.S.;N.Sugitani;M.Hatsu;K.Takamizawa https://doi.org/10.1139/w02-114
  8. Biotech. Bioeng. v.40 Production of ylitol from D-xylose by Candida tropicalis: optimization of production rate Horitsu,H.;Y.Yahashi;K.Takamizawa;K.Kawai;K.Suzuki;N.Watanabe https://doi.org/10.1002/bit.260400912
  9. J. Ferment. Bioengi. v.79 Purification, characterization and structure analysis of NADPH dependent D-xylose reductase from Candida tropicalis Yokoyama,S.;T.Suzuki;K.Kawai;H.Horitsu;K.Takamizawa https://doi.org/10.1016/0922-338X(95)90606-Z
  10. J. Ferment. Bioeng. v.81 Production of xylitol from D-xylose by Candida tropicalis -the effect of D-glucose feeding Yahashi,Y.;H.Horitsu;K.Kawai;T.Suzuki;K.Takaizawa https://doi.org/10.1016/0922-338X(96)87593-3
  11. J. Biotechnol. v.23 Interlaboratory testing of methods for assay of xylanase activity Bailey,M.J.;P.Biely;K.Poutnen https://doi.org/10.1016/0168-1656(92)90074-J
  12. Water Sci. Technol. v.45 The production of D-xylose by enzymatic hydrolysis of agricultural wastes Cho,C.H.;M.Hatsu;K.Takamizawa
  13. Appl. Microbiol Biotechnol. v.50 Increase of xylitol yield by feeding xylose and glucose in Candida tropicalis Oh,D.K.;S.Y.Kim https://doi.org/10.1007/s002530051314
  14. J. Biotechnol. v.67 Xylitol production using recombinant Saccharomyces cerevisiae containing multiple xylose reductase genes at chromosomal δ-sequences Kim,Y.S.;S.Y.Kim;J.H.Kim;S.C.Kim https://doi.org/10.1016/S0168-1656(98)00172-2
  15. Biotechnol Lett. v.22 Production of xylitol in cell recycle fermentation of Candida tropicalis Biotechnol Lett. Choi,J.H.;K.H.Moon;Y.W.Ryu;J.H.Seo https://doi.org/10.1023/A:1005693427389
  16. Biotechnol. Lett v.22 Increase in xylitol production of Candida tropicalis Azuma,M.I.;J.Keuhi;R.Kinitani;J.Kato;H.Ooshima https://doi.org/10.1023/A:1005693427389
  17. Enzyme Microb. Technol. v.20 Stable expression of xylose reductase gene enhance xylitol production in recombinant Saccharomyces cerevisiae Chung,Y.S.;M.D.Kim;W.L.Lee;Y.W.Ryu;J.H.Kim;J.H.Seo
  18. Enzyme Microb. Technol. v.31 Comparison of xylitol production in recombinant Saccharomyces cerevisiae strain harboring XYL1 gene of Pichia stipitis and GRE3 gene of S. cerevisiae Kim,M.D.;Y.S.Jeun;S.G.Kim;Y.W.Ryu;J.H.Seo https://doi.org/10.1016/S0141-0229(02)00192-8
  19. Bio/Technology v.9 Xylitol production by recombinant Saccharomyces cere visiae Hallborn,J.;M.Waldfridsson;U.Airakisinen;H.Ojamo;B.Haln-Hagerdal;M.Penttila;S.Keranen https://doi.org/10.1038/nbt1191-1090
  20. Ind. Crops Products. v.7 Biological production of industrial chemicals, i.e. xylitol and ethanol, from lignocellulose by controlled mixed culture Delgenes,J.P.;M.C.Escare;J.M.Laplae;R.Moletta;J.M.Navarro https://doi.org/10.1016/S0926-6690(97)00038-1
  21. J. Japan Soc. Waste Manage. Experts v.11 Development of medium by the combined treatment of steam explosion and chemical decomposition of peanut shells for production of xylitol by Candida tropicalis Cho,C.H.;S.Aruga;M.Hatsu;T.Suzuki;K.Kawai;K.Takamizawa https://doi.org/10.3985/jswme.11.11