Classification of Query E-Mail Using Neural Network

신경망을 이용한 사용자 질의 전자 메일 분류

  • Published : 2004.03.01

Abstract

More and more users are using the query e-mail according to the increment of use of internet. The operator of internet site desires the users to check the FAQ and Q&A contents first before sending the query e-mail to the operator However the users try to get the solution for a problem easily by simply sending a query e-mail. Therefore the increment of query e-mail is inevitable, and the site operator is suffering from too heavy loads and spending too much time and cost to reply the query e-mail. In this paper, we are proposing an efficient method of classifying the query e-mail of users automatically by using a neural network. To verify the reasonability of our work, the query e-mails of KORNET are used as the test data, which is actually gathered in KT. A total of 210 learning data and 280 test data were used to test the performance of the proposed approach. From the experiments we got the encouraging result from the view point of application in real life. The proposed approach satisfied the request of users who wanted rapid response for their query e-mail.

인터넷 사용 증가와 함께 질의 메일의 사용이 증가함에 따라 인터넷 사이트 운영자는 이용자가 질문을 하기 전에 먼저 FAQ나 Q&A를 먼저 확인하기를 바라고 있으나 사용자는 간단히 질의 메일을 보냄으로써 답을 손쉽게 얻으려고 한다. 이에 따라 질의 메일 증가는 상담자에게 많은 시간과 비용을 투자하도록 하고 있다. 본 연구는 질의 메일을 자동으로 분류함으로써 담당자가 메일을 효과적으로 처리하도록 하기 위한 방법에 관한 연구이다. 본 연구의 타당성을 검증하기 위하여 현재 한국통신(주) 코넷에서 받은 질의 메일을 실험 데이터로 사용하였다. 14개의 질의 메일 부류에 대해 210개의 학습 데이터와 280개의 테스트 데이터 등 모두 490개의 데이터를 이용하여 실험을 수행한 결과 신속한 답장을 바라는 사용자의 요구에 부응함을 알 수 있었다.

Keywords